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Abstract - According to the Bank for International Settlements, investment banks across the globe now hold more than a 

trillion US dollars' worth of sovereign bonds. Sovereign credit grades’ movements largely drive these positions' risk and 

volatility. Their prediction is thus crucial to better manage sovereign credit portfolios. Available economic data is 

unreliable, scarce and restricted by the number of sovereign entities. Established historical models used to set and predict 

sovereign credit grades centre around restrictive linear modelling. Modern machine learning techniques require numerous 

parameters and vast datasets to converge over noisy data. Through thorough data processing, motivated by both economic 

and statistical insight, we put forward classifiers which novelly demonstrate that small neural networks and random forests 

can calibrate accurately on poor, lopsided macroeconomic datasets. Their accuracy outperforms all known industry and 

published implementations, both linear and neural network based. Our results are cross-validated on carefully isolated data, 

both temporally and geographically, replicating a production situation. This architecture is the first capable of predicting 

sovereign credit grades’ evolution with accuracy high enough to meet the intuitive and easily implemented “constant” 

classifier benchmark. Unlocking the use of modern statistical methods to small, low quality economic and financial 

datasets, our predictors underlie the core importance of extensive problem specific data pre-processing in machine learning 

for macroeconomic classification. 

Index Terms - Sovereign Credit, Machine Learning for Macroeconomics, Small Neural Networks

Introduction 

While investment banks’ portfolios are heavily exposed to sovereign debt through different parts of their business, their 

largest exposure lies in their Retail and Prime Brokerage Departments of Wholesale Divisions. Banks hold sovereign bonds 

in the name of their clients, which can be institutional (e.g. mutual and pension funds) or buy-side counterparties (e.g. 

hedge funds and high-wealth individual investors).1 

While not as risky as owning credit products in their own name, bonds held as collateral still carry a substantial risk [16]. 

Major investment banks have recently suffered multiple losses from the risk carried by such positions [1,3,8]. Modern 

regulatory frameworks use credit grades as the cornerstone of risk measurement of credit products, especially for sovereign 

exposures [6]. The improvement of sovereign credit grades is crucial towards bettering the risk models of banks. 

This study describes two models developed in partnership with Nomura's Risk Methodology Group, furthering their 

predecessors at predicting the movements of the risk charge carried by sovereign bonds. We attempt to model and predict 

the movements of sovereign credit grades using data available to Nomura. We have access to dozens of financial, social 

and economic time series tracking the evolution of countries across two decades. To assess the quality of our model, we 

first build an intuitive and straightforward benchmark, the “constant” predictor. This comparison metric simply assumes 

that a country's grade never changes: for any timestamp and country, it outputs the last available observed credit grade for 

that country. The low rate of change of sovereign credit grades makes this predictor perfectly accurate in almost 80% of 

cases. When wrong, this predictor is still often close to the true value. While carrying no predictive power, this benchmark 

is high. To our knowledge, no prior published model meets its accuracy [17,18]. Typical industry legacy models (see Section 

1) also are not as precise as this benchmark [4,19,20].  

Our neural network classifier aims solely at accuracy and outperforms the “constant” predictor (see Section 3), managing 

above 80% perfect accuracy and wrong by more than one notch over only 0.4% of entries. Our Random Forest model 

intends to be good at identifying grade changes, the minority class in our dataset (see Section 4). It achieves ≤ 20%  type-

II error, while maintaining ≤ 10% type-I error. All our claims are based on cross-validation performed over separated 

 
1 Other exposures include the exposure to newly issued bonds, which 

banks buy before reselling them to investors. (For the Japanese 
government in 2023 alone, new issuance and renewals will reach 39.3 

trillion Yen [14]. Banks also keep positive inventories of many 

sovereign credit products as part of their market making business 

[5,15]. 
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entries. To ensure absence of data leakage [22], the cross-validation is carried over either new countries or the most recent 

years of data accessible, strictly splitting the test and train sets geographically or temporally.  

1. Sovereign Grades Modelling Challenges 

We now summarize the main challenges of predicting sovereign credit grades. From this analysis we justify the construction 

of the “constant” predictor. In parallel, these challenges limit the maximal quality of potential models. We establish the 

class imbalance of the dataset, its unequal geographic distribution and its relatively small effective size.  

1.1.  Dataset Size & Quality 

In theory, there are around 195 countries in the world. Sovereign socio-economic figures have been reported for yearly 20 

years, both by public (IMF, World Bank) and private institutions (FactSet, Bloomberg). The maximal potential number of 

(𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) pairs nears 4000. However, not all countries are graded: Standard and Poor’s has only ever graded 164 

nations. 

In our analysis, we focus on a set of 20 features to predict sovereign credit grades' movements (see Table 2). Thus, for a 

(𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) instance to be usable, 20 indicators need to be available: the dataset's effective size is reduced ten-fold 

to 404. Moreover, an ideal model would include multiple prior years of data to capture a country’s economic trajectory. 

Using 3 years of data to predict grades decreases the number of entries by 25%.  

Furthermore, there are 20 grades classes from AAA to D. Class sizes can be low, especially as the data's availability is 

unevenly distributed. Africa (resp. Europe) comprises 11% (36%) of available entries despite representing more than 25% 

of nations (22%).2 To circumvent the small class sizes, we replace their labels. Section 4 uses two classes, “no-change” 

and “change”. All other predictors attempt to predict grades' changes and directions: {≤ −2, −1, 0, 1, ≥ 2}.3 While this 

reformulation increases classes' sizes, it implies that countries at different stages of development have the same label. 

Figure 1 confirms that sovereign credit grades' movements differ depending on their level of economic development: the 

classes are now less homogenous.  

 

Figure 1: 2017-2018 heterogenous grade movements distributions depending on countries' development level. 

Finally, the data's reliability is not perfect. Socio-economic indicators published are not final and are regularly revised [7]. 

It is not straightforward to integrate data from different eras [24], regions [12] and institutions [2] into one dataset.  

 

 

 
2 According to the United Nations Group of Experts on Geographical 

Names (UNGEGN) [21]. 
3 Neural networks, lacking explainability, use directional classes. 

Random forest classifiers' feature importance allows for the direction 

of the prediction to be determined easily despite not being a formal 

output. 
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1.2.  Imbalance & Predictors 

We swapped labels from {1, … , 20} to predicting a grades' change instead. While this increases the classes' volumes, it 

introduces strong imbalance between their sizes. Indeed, grades on average change every four years only: the “no-change” 

class represents 77% of the dataset. Without careful work, overall accurate models can have low accuracy on the minority 

classes (see Section 4).4 Plus, grade updates by more than 2 notches within a year are rare and correspond to default events: 

as they default, nations' ratings jump to 20 from a better grade.5 From this, one can devise a simple and accurate benchmark 

for this classification problem. For every (𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) entry, the “constant” predictor outputs the previous year’s 

grade for this country.  

This predictor has high accuracy (see Table 1). However, this predictor holds no predictive power and thus holds no value 

to the bank other than as a benchmark. Classical models, based on linear regressions, used for the prediction of sovereign 

grades have substantially lower accuracies (with the 20 features we use, see Table 2). Instead of using a linear regression 

predictor, using a shallow neural network6 improves accuracy but not does not meet the “constant” benchmark. 

 

Table 1: “Constant” model predictions outperforms typical linear regression models as well as simple networks. 

2. Data Pre-Processing 

 

2.1.  Pre-Processing 

Our features are prescribed by internal credit economists (see Table 2). They include the features flagged by credit rating 

agencies as essential to their rating process, but also features considered the most relevant to actual grade updates by credit 

risk professionals, which we presume are also used by public rating agencies in their grading. Though capturing complex 

interplay between features is crucial, Table 2 confirms that the indicators we use are indeed strongly correlated to time 

series of sovereign credit grades. Most specifically, , features with the highest absolute correlation to sovereign credit grades 

describe the financial structure of the country in regard to its debt: External Debt, Servicing Costs, General Government 

Reserves, Non-Performing Loans. Social structural indicators such as Rule of Law are also correlated to sovereign credit 

grades.  

 

 
4 Credit grades are usually reviewed quarterly. We use yearly data as 

using quarterly entries instead would simply increase the proportion of 

“no-change” instances. Yearly grade updates already capture all the 

changes (grades rarely change twice in a year and we did not find 

instances of changes in opposite directions in a year). 
5 Some countries defaulted multiple times across the 20 years 

encompassed in our study, as they relist bonds after a default event. 

After the prior default, the newly emitted bonds get a assigned a new 

credit grade. If available, we use the non-defaulted grade of a country, 

though we ensure that every country which defaults is reported as such 

(20) for at least one year. 
6 Deeper networks with many more parameters do not converge in 

training over our small dataset. 
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Table 2: Correlation of features to sovereign credit grades. While some correlations exhibit near independence, some are 

highly (anti)-correlated with the target. Our models also use a 20th feature, last year's credit grade. 

We outline how we restructure these features to be used within our predictors. While many legacy models [13,25] focus on 

one year of data, we use multiple years of input at once.  Every entry in the training and testing sets thus has the following 

format: 

Input: 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 1: [𝑉𝑎𝑙𝑢𝑒(𝑖0 −  (𝑊𝐿 − 1)), … , 𝑉𝑎𝑙𝑢𝑒(𝑖0)], 

… 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀: [𝑉𝑎𝑙𝑢𝑒(𝑖0 −  (𝑊𝐿 − 1)), … , 𝑉𝑎𝑙𝑢𝑒(𝑖0)] 

Output:     𝐶𝑟𝑒𝑑𝑖𝑡 𝐺𝑟𝑎𝑑𝑒(𝑖0) 

Where WL is the window length, the number of years used for every entry, M the number of indicators used, and 𝑖0  ∈

[2000, 2021]  the target year for which we want to predict the country's credit grade. In results presented below, every 

𝑖0  ∈ [2000, 2021] is a target year. That is, for every available year and country, we add an entry in the training set: every 

available 𝐶𝑟𝑒𝑑𝑖𝑡 𝐺𝑟𝑎𝑑𝑒(𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) is the label of an entry.  

Before the data is sliced in the process described above, we reconstruct some missing entries to allow for more data to be 

used at once. Indeed, even standard institutional data sources such as the World Bank do not reliably provide data for 

countries that are usually reported on. For credit grades themselves, our prediction target, we do not artificially recreate 

any values. However, when a country's grade is missing from S&P's grading across the entire [2000, 2021] range, we 

instead use Moody's or alternatively Nomura's grading.7 For the features of our model, the data reconstruction process is 

described thoroughly in Appendix A.1. Essentially, each (𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) is treated independently. The hyper-parameter 

(Max Fill) controls for the maximal number of consecutive missing entries that we fill back for each time series. Given 

(Max Fill), each missing entry to be re-filled is calibrated as the weighted average of 3 linear trends, respectively a short-

term, a past short-term and a global long-term trend. For data missing in year T, the weight of the past short-term (resp. 

future) is inversely proportional to the number of consecutive missing entries in the time series prior to (after) year T. The 

long-term trend's weight is set so that the three weights sum to one. The impact of the back-filling process is shown in 

Table 2 and 3.  

 

Table 3: Dataset size for varying Max Fill. 

WL is set to 3 - Total Entries, with NaNs: 3020. 

(Max Fill = 3) doubles the size of the training set. Low values of (Max Fill) add comparatively many entries in the dataset, 

filling sporadic “holes'' in time series. Greater (Max Fill) values largely recreate data before any was available. As this is 

not our goal, we set (Max Fill) to three for the rest of this study.  

Varying the window length WL also impacts the size of the dataset. For each entry, any missing figure in WL years of data 

across M features removes the entry from the dataset. Thus, longer windows reduce the number of available entries, but 

allow the model to observe more complete financial and economic sovereign trajectories. 

 

Table 4: Dataset WL on number of available entries in the dataset resulting from the described slicing process. Max Fill 

was set to 3. 

 
7 Filling individual years is not implemented as it would artificially 

add grade changes. 
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2.2.  Avoiding Leakage 

Initially, once our dataset was back-filled and split, we randomly shuffled the entries in training and testing sets, yielding 

100% accuracy out-of-sample over entries ≤ 2020. This wrongly perfect accuracy is caused by information leakage from 

previously seen entries. Indeed, the structure described above entails that predictors have seen credit grades as features in 

training that are labels of entries in the test.8 The model is able to differentiate each distinct (𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) entry.9 Indeed, 

since each entry has 20 features across multiple years, including past credit grades, the model in practice develops a way 

to separate all (𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟, 𝐺𝑟𝑎𝑑𝑒) entries. It holds strictly no predictive power however, solely relying on already 

having seen each grade it is required to predict in its training set.  

Confirming this data leakage, if the test set is composed of isolated countries, the model's performance is very low. The 

same substantial drop in accuracy is observed, though less significant, if we isolate the last year of data from the training 

entirely, instead of individual nations.10  

The latter implementation replicates real model use once in production: the model needs to predict grades having calibrated 

its features on previous years of data. Both splitting methods make the prediction task at hand more challenging, as grading 

methods vary through time and regions.  

These processes however, while permitting the user to spot leakage, do not provide a solution the look ahead from training. 

To this end, we analogously stratify the train set separately to ensure that the network has never seen a grade to predict 

earlier in training. We stratify either by nation first, then by year, or the reverse, yielding the same predictive power 

presented in Table 5. 

3. Maximising Overall Accuracy with Neural Networks  

The neural network implementation presented in this section beats all other known models and meets the “constant” 

predictor’s benchmark. Being able to observe a country's financial and economic history is indeed helpful for sovereign 

credit grade predictions. Setting WL to 3 or 4 yields similar results qualitatively, whilst shorter and longer horizons hinder 

performance. We opine that a longer horizon, multiplying the dimension of the feature set, makes the calibration less 

straightforward. Meanwhile, it reduces the effective number of entries, and consequently substantially reduces the accuracy. 

As for legacy models, two datapoints per feature is not enough to capture a country's trajectory. It does not replicate the 

“constant” predictor either.   

We tested multiple classical feed-forward neural networks of varying depth. We first find that deep neural networks, 

encompassing a large number of parameters, do not perform well and their training usually does not converge well.  

Indeed, the small size of our dataset restricts the number of parameters that the model can carry. This analysis is performed 

as no clear consensus exists yet in the finance field over which kind of Neural Network to use [10,22]. Optimal networks 

have few hidden layers, ideally two, with a small number of nodes in each. We settled on hidden layers of width 100 and 

50 neurons respectively.  

Table 5: Our Neural Network outperforms the results from the “constant” mode benchmark. This predictor does not 

replicate the “constant” predictor. Yet, its accuracy over the minority class is low. 

However, it is not an ideal predictor. Firstly, its convergence is not perfectly stable: calibrating the network shuffling the 

training set in various acceptable orders does not yield the same results, as it is common to observe nets' training not 

converging properly. Furthermore, its accuracy on the “no-change” class beats its total accuracy. This is expected as the 

 
8 Even in the absence of leakage, accounting for the temporal 

structure in processing is not straightforward [9,23]. 
9 No remarkable change in performance was observed modifying 

batch sizes [11]. 

10 We can also spot this issue by only including (𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟)  

entries in the dataset with 𝑌𝑒𝑎𝑟 ≡ 0 [𝑊𝐿]. This ensures each 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) only appears once. 
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“no-change” class is largely more frequent than the other ones: a large increase in accuracy in the “change” class does not 

compensate for the associated small decrease in accuracy in the large class. Multiple attempts to solve this issue were 

unsuccessful. Enforcing strict stratification so that the model initially sees “change” entries at the same rate as “no-

change”, is not enough.  

As such, we opine that while the imbalance in the size of the two classes is a large driver of the difference in prediction 

quality, it is not the only one. The stratification process just outlined would have helped towards reducing the performance 

gap, had size imbalance been the only factor.  

We argue that despite the “no-change” class being preponderant, the “change” class contains an outsized diversity of 

scenarios. A large majority of instances of the “no-change” class in practice represent (𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) pairs during which 

no significant financial nor economic event happened. By contrast, every entry in the “change” class represents a more 

convoluted national scenario, which justified an upgrade, or more frequently, a downgrade.  

The aim of this predictor was solely accuracy, which is satisfied, as this implementation trumps all previous ones, both 

internal and in published research. For a model used in a systematic fashion without human review, overall performance is 

the most important metric. Yet, for Credit Risk analysts, who manually review the output of the model, high accuracy on 

each class, and especially over the “change” class, is central. To satisfy this requirement, we now present a random forest 

classifier, built to minimize the type-II error, i.e. missing a grade change.  

4. Minimizing type-II error with Random Forests 

As described in the introduction, it is crucial for the bank to flag grades that are going to change. It is substantially more 

costly to miss a grade being modified than to mistakenly label a (𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) pair as a “change”. The random forest 

predictor presented in this section is intended to minimize such errors, being the type-II error. We manage to construct a 

promising predictor 80% accurate on the “change” class, which remains 92% accurate over “no-change” class.11 

We set WL to three in this section, yielding in total 851 entries in our reconstructed dataset. Since we are to implement a 

random forest classifier, we change the structure of the features given as inputs to the model.12 For each feature, we replace 

the WL years of data by their average increment (trend), average squared increment (volatility) and last available value 

across the WL years in the window.  

Table 6 outlines the optimal number of trees in the forest, 100, and Table 7 presents the optimal values of other hyper-

parameters. 

 

Table 6: Average Random Forest performance per class for varying number of individual decision trees in the forest. 

Table 7 also presents the accuracy of the random forest predictor. It outlines accuracy with equal class weights, minimizing 

the type-II error and minimizing the type-I error (see Appendix A.2), the classifier attains 80% accuracy over the “change” 

class, while maintaining over 90% accuracy over the “no-change” class. 

 
11 As our neural network predictor aimed at maximising overall 

accuracy, we focused on performance across the 2 classes. 
12 Each node in each decision tree from the random forest can only 

split entries depending on one feature's level relative to a calibrated 

cutoff value. As such, WL years of data per indicator is not sufficient 

for the model to capture, e.g., the trend or volatility of the indicator, 

and is thus detrimental to its performance. 
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Table 7: By assigning unequal weights to the two kinds of errors, we can shift the model's performance. To avoid overfit, 

Minimum Sample Split is set to eight.  

Conclusion 

Sovereign credit grades are a central driver of risk over banks' consequent sovereign credit exposures. Thus, better 

prediction of nations' credit grades, even offering only slight improvement over current models, is of high value to all major 

financial institutions.  

Within the same framework as classical linear model, straightforward neural networks offer substantial improvements 

already, highlighting the importance of capturing complex interactions between features. 

Maximising overall accuracy, the multi-layer perceptron using multiple years of data at once surpasses not only all previous 

published implementations but is, to our knowledge, the first model to exceed the predictive ability of the “constant” 

predictor. Error rates compared to this benchmark are reduced by 25%. Using it in pricing and risk engines, replacing the 

“constant” predictor or legacy models would entail substantial improvements in efficiency. 

Our random forest classifier targets the type-II error, i.e. missing grade changes. Banks are asymmetrically exposed to the 

mislabelling of grades' outlooks: it is more costly to miss a grade change. We showed that the classes' imbalance, as grade 

changes only represent 23% of our dataset, is the not main challenge in reducing the type-II error. Indeed, as one class is 

more populated, its diversity is also smaller. The “no-change” class is composed of numerous instances of countries where 

volatility of the given features is low. This distinction explains why it is inherently harder to anticipate grade changes. 

Despite this, the random forest classifier performs manages to correctly identify at least 80% of the members of each label.  

As the arrangement of the manuscript indicates, the largest share of the work and its main challenges lay in sourcing, pre-

processing and carefully structuring our dataset prior to training any statistical engine over it. Our analysis thus shows that 

future developments in the modern machine learning over small-scale low-quality datasets will also centre on pre-

processing. 

We would like to thank Alfonso de la Torre from Nomura International Securities and Ségolène McKinnon for their help 

and feedback in this project.   
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Appendix 

A.1. Data Reconstruction 

Let us denote V ≔  {𝑉𝑡 , 𝑡 ∈ [2000,2021]} the time series corresponding to an indicator's reported values for an individual 

country, with yearly frequency.  

A missing entry in V for year 𝑡 is denoted 𝑉𝑡 = Ø. Firstly, if ∀𝑡 ∈ [2000,2021], 𝑉𝑡 = Ø, then the reconstructed time series 

is also empty: for each country, entirely missing features are left empty. In the following, we thus assume that: 
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   ∃𝑡 ∈ [2000,2021] 𝑠. 𝑡.  𝑉𝑡  ≠ Ø. 

For 𝑡 ∈ [2000,2021], let us define 𝑇+ and 𝑇− as functions of 𝑡: 

    𝑇+(𝑡) = {
,                                       𝑖𝑓  𝑉𝑠 = Ø, ∀𝑠 ≥ 𝑡,

min(𝑠 ≥ 𝑡,  𝑉𝑠  ≠ Ø )                             𝑒𝑙𝑠𝑒.
     

  𝑇−(𝑡) = {
−,                                       𝑖𝑓  𝑉𝑠 = Ø, ∀𝑠 ≤ 𝑡,

min(𝑠 ≤ 𝑡,  𝑉𝑠  ≠ Ø )                             𝑒𝑙𝑠𝑒.
  

Let 𝑉̂ ∶= {𝑉̂𝑡 , 𝑡 ∈ [2000,2021]} be the reconstructed time series. Given 𝑡 ∈ [2000,2021], let us now assume 𝑉𝑡 = Ø. 

Given (𝑀𝑎𝑥 𝐹𝑖𝑙𝑙)  ∈ ℕ+, let us first determine whether 𝑉𝑡 is to be back-filled or not.  

∀𝑡 ∈ [2000,2021] we have: 

    If (𝑀𝑎𝑥 𝐹𝑖𝑙𝑙) ≥ 𝑚𝑖𝑛(|𝑇+(𝑡) − 𝑡|, |𝑡 − 𝑇−(𝑡)| ) > 0, the value of 𝑉̂𝑡 is reconstructed.  

    Else, 𝑉̂𝑡 =   𝑉𝑡 . 

As above, let us now assume that we have 𝑡 ∈ [2000,2021] such that 𝑉𝑡 = Ø, and that 𝑉𝑡 is to be back-filled under the 

provided (𝑀𝑎𝑥 𝐹𝑖𝑙𝑙). 

• If  𝑇+(𝑡) <    and 𝑇−(𝑡) > − , we define: 

𝛾𝐿 =  
𝟙{𝑇−(𝑡)=𝑡−1}

2+ 𝟙{𝑇+(𝑡)=𝑡+1}

 
𝑇+(𝑡)−𝑡

𝑇+(𝑡)−𝑇−(𝑡)
 , 

𝛾𝑅 =  
𝟙

{𝑇+(𝑡)=𝑡+1}

2+ 𝟙{𝑇−(𝑡)=𝑡−1}
 

𝑡−𝑇−(𝑡)

𝑇+(𝑡)−𝑇−(𝑡)
 . , 

Then: 

𝑉̂𝑡 =
𝑉𝑇−(𝑡)(𝑇+(𝑡) − 𝑡) + 𝑉𝑇+(𝑡)(𝑡 − 𝑇−(𝑡))

𝑇+(𝑡) − 𝑇−(𝑡)
 

               + 𝛾𝐿 ⋅ (𝑉𝑇−(𝑡) − 𝑉𝑇−(𝑡)−1) + 𝛾𝑅 ⋅ (𝑉𝑇+(𝑡) − 𝑉𝑇+(𝑡)+1). 

The first term is a linear interpolation between the two observations closest to the year being reconstructed. 𝛾𝐿  and 𝛾𝑅  terms 

respectively represent the impacts of future and past short-term trends on the current value. When 𝑡 is 𝑇− (resp. 𝑡 is 𝑇+), 

𝑉's tendency prior to 𝑉𝑇− (after 𝑉𝑇+) is taken into account as (𝑉𝑇−(𝑡) − 𝑉𝑇−(𝑡)−1) (resp. (𝑉𝑇+(𝑡) − 𝑉𝑇+(𝑡)+1)). 

• Else, if 𝑇+(𝑡) <    :  

𝑉̂𝑡 = 𝑉𝑇+(𝑡) + (𝑉𝑇+(𝑡) − 𝑉‾ ) ⋅
𝑇+(𝑡) − 𝑡

max {𝑠 ∈ [2000, 2021], 𝑉𝑠 ≠ ∅} − 𝑇+(𝑡)
+

𝑉𝑇+(𝑡) −
𝑉𝑇+(𝑡) + 𝑉𝑇+(𝑡)+1 + 𝑉𝑇+(𝑡)+2

3
𝑇+(𝑡) − 𝑡

. 

• Else, when 𝑇−(𝑡) > −  :  

𝑉̂𝑡 = 𝑉𝑇−(𝑡) + (𝑉𝑇−(𝑡) + 𝑉‾ ) ⋅
𝑡 − 𝑇−(𝑡)

𝑇−(𝑡) − min {𝑠 ∈ [2000, 2021], 𝑉𝑠 ≠ ∅}
+

𝑉𝑇−(𝑡) −
𝑉𝑇−(𝑡) + 𝑉𝑇−(𝑡)−1 + 𝑉𝑇−(𝑡)−2

3
𝑡 − 𝑇−(𝑡)

. 

In the two latter cases, where 𝑇+(𝑡) =    or 𝑇−(𝑡) = − , the reconstructed values are computed starting from the last 

originally available value in the time series, 𝑇+(𝑡) and 𝑇−(𝑡) respectively. That is for instance where 𝑇+(𝑡) =   , we start 

by back-filling (𝑇+(𝑡) − 1), and only then (𝑇+(𝑡) − 2) if (𝑀𝑎𝑥 𝐹𝑖𝑙𝑙 ≥ 2). This ensures that the terms of the rolling 

average 𝑉𝑇+(𝑡), 𝑉𝑇+(𝑡)+1 and 𝑉𝑇+(𝑡)+2 (𝑟𝑒𝑠𝑝.  𝑉𝑇−(𝑡), 𝑉𝑇−(𝑡)−1 and 𝑉𝑇−(𝑡)−2) are available at each step of the back-filling 

process. 

In edge cases, when (𝑇+(𝑡) + 1) or (𝑇−(𝑡) − 1) are not well-defined for instance, their associated weight 𝛾 is set to zero. 
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A.2. Class Weights in Random Forests 

The goal of the Random Forests implementations is to ensure that good overall performance also translates to satisfactory 

accuracy over the minority “change” class. To maximise the performance over the “no-change” class and minimize the 

type-II error, we increase the weight of the minority class to five.13 In the previous results, we used an equal weighting: 

mislabels over each class carried the same cost.  

In practice, to increase a class’s weight, we modify the function I assessing the nodes' purity.  

Let us consider a node N in a decision tree. The node's population is split in two classes {“𝑐ℎ𝑎𝑛𝑔𝑒”, “𝑛𝑜 − 𝑐ℎ𝑎𝑛𝑔𝑒”}. Their 

respective ratios in the node's population are 𝑝𝑁(“𝑐ℎ𝑎𝑛𝑔𝑒”)  and 𝑝𝑁(“𝑛𝑜 − 𝑐ℎ𝑎𝑛𝑔𝑒”). Since there are only two classes, 

we have: 

     𝑝𝑁(“𝑛𝑜 − 𝑐ℎ𝑎𝑛𝑔𝑒”) = 1 - 𝑝𝑁(“𝑐ℎ𝑎𝑛𝑔𝑒”).   

From this, we define the node's entropy impurity as follows: 

     

𝐼(𝑁) = − ∑ 𝜔(𝜒) ⋅ (𝑝𝑁(𝜒) ln(𝑝𝑁(𝜒)))

𝜒∈{‘‘(𝑛𝑜−)𝑐ℎ𝑎𝑛𝑔𝑒"}

. 

When splitting a node in children nodes, the separation is determined to minimize the aggregate entropy of the resulting 

children nodes. By setting 𝜔(“𝑐ℎ𝑎𝑛𝑔𝑒”) to five instead of one, we incentivize the construction of individual decision trees 

to classify correctly the (𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑌𝑒𝑎𝑟) pairs labelled as “change”.  

 

 
13 We are thus overweighting the “no-change” class above its balanced weight. Its balanced weight is two (or four, if the weight of the “change” class 

is normalized to one). Indeed: 
𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑆𝑖𝑧𝑒

{# “𝑐ℎ𝑎𝑛𝑔𝑒”} {# 𝑐𝑙𝑎𝑠𝑠𝑒𝑠}
=  

0.851

(0.24 0.851) 2
≈ 2. 


