A Comparative Analysis of Declining Oil Revenue Implications on Oil Exporting Countries: An ARDL Bound Test Approach for Nigeria, Venezuela, and Norway

[1] Millicent Adanne Eze, [2] Aminu Hassan, [3] Reza Kouhy

- [1] Department of Economics, University of Abuja, Nigeria, [2] Department of Accounting, Federal University Dutsin-Ma, Nigeria [3] School of Business, Law and Social Sciences, Abertay University, Scotland, UK.
- [1] ezemillicent@gmail.com; millicent.eze@uniabuja.edu.ng [2] ammhass@gmail.com; Ahassan2@fudutsinma.edu.ng [3] r.kouhy@abertay.ac.uk

Abstract— One of the most dynamically transacted commodities across the globe is crude oil whose price is constantly changing. The magnitude of the effect in the oil price fluctuation differs across nations, depending on whether the country is oil-importer or oil-exporter. Oil serves as a good source of revenue to oil exporting countries and also serves as a vital input to oil importing nations. However, this study entails a comparative analysis of declining oil revenue on three oil-exporting countries, Nigeria, Venezuela, and Norway. Yearly timeseries data for 41 years were analyzed, using ARDL estimation technique. Results reveal that government revenues of these oil-exporting countries have dropped substantially. Contrary to expectation, decreasing oil price yields a positive and significant effect on Nigeria and Venezuela's government expenditures, financed through seigniorage and borrowing as they are overwhelmingly dependent on oil exports while Norway is not affected by the resource curse syndrome. Norway is serving as a reference to best practice as they manage their natural resources effectively. To close the revenue gaps, it is recommended that Nigeria and Venezuela adapt Norway's fiscal rule, fix their refineries, restore security to attract foreign investors, diversify and effectively harness other natural resource.

Index Terms— Autoregressive Distributed Lag (ARDL) Model, Borrowing, Comparative Analysis, Declining Oil Revenue, Oil Price, Seigniorage

I. INTRODUCTION

Crude oil is one of the dynamically traded commodities all over the world, and oil revenues play a very significant role in the structure of the oil exporting countries [31], [30], [25], [4], [33], [34]. Over the years, the interest in the causes and consequences of oil price fluctuations has been on the increase among different researchers, policymakers, academics, and market practitioners [37], [103], [8]. Changes in oil price have been a constant phenomenon since February 1946 when the oil price was as low as \$1.17 per barrel to July 2008 when oil price reached its peak of \$145.31 per barrel. Oil price as at the 9th of March, 2020 was trading at \$36.321 per barrel and declined further to \$20.482 per barrel by the end of March, 2020 [97], [19]. As at the 14th of July, 2024 WTI was sold at \$82.21 per barrel while the Brent crude was sold at \$84.75 per barrel [77]. Although, the magnitude of the changes in oil price differs across countries, depending on whether the economy is oil-importer or oil- exporter as oil serves as a crucial input to oil importing nations and a good source of revenue generation to oil exporters.

However, the focal point of this research is on Nigeria, Venezuela, and Norway for a comparative analysis. Nigeria has abundant natural resources, with oil and gas as the highest gifted mineral in the country. Nigeria is the highest oil producer in Africa and the sixth largest producer of petroleum in the world as oil accounts for over 85% of its government revenues and more than 98% of the exports. The Nigerian economy is experiencing serious exchange rate depreciation and volatility, deteriorating growth, downward review of the budget benchmark and drastic reduction in government expenditures due to the slump in crude oil prices [1], [38], [52], [3]. The declining oil revenue has brought about fiscal imbalance and serious macroeconomic instability in Nigeria due to the nations' overdependency on oil export. More so, over 70% of the populace are living below the poverty line and irrespective of the high proceeds the economy has gained from oil for over three decades, Nigeria is still struggling with many issues, such as poor infrastructural development, low level of production, high level of unemployment and high level of insecurity [57], [51], [3].

Venezuela is the founding member of OPEC and has the highest oil reserves in the world. The economy is overwhelmingly dependent on oil as it accounts for more than 96% of Venezuela's export earnings. The decline in oil price has brought

about increase in foreign debt, increase in poverty level, and increasing political tension due to economic instability. The Venezuelan economy is falling apart as residents lack access to basic food. The country has also laid off thousands of its oil workers and crapped off multibillion-dollar worth projects due to shortages of funds [101], [102], [80], [65], [91]. The Norwegian economy on the other hand is a small open economy which has been tremendously transformed through the discovery of oil [78], [58] as the oil sector constitute about 57% of the Norwegians exports in 2014 and about 16% of its gross domestic product [44]. The oil sector also accounts for over \$40 billion annually, being the largest portion of export earnings in the economy [88], [13]. Norway depends so much on oil for more than half of its exports. The present slump in crude oil has reduced Norway's profitability to the extent that about 3 offshore rigs are under suspension, more than 10,000 Norwegian oil workers have been laid off while over \$150,000 million worth of investments were also suspended [15].

The three economies are examined and compared while necessary lessons drawn from the Norwegian economy as it serves as a reference to best practice in this scenario. The recent and incessant decline in the oil price also led to the decline in oil revenue of most of the oil-exporting countries and has widened the budget deficit gaps. Oil revenues constitute a major part of income for most of these oil exporting countries while the significant drop in government revenue was due to the decrease in oil price and the recessionary trend in these economies highly dependent on oil income [61]. There is indeed a wide gap between oil prices at which ail producers break even [32]. Oil price needs to be above \$100 per barrel for most of these oil exporting economies to balance their national budgets [32], [87]. Nevertheless, fluctuating oil prices are usually driven by various supply and demand factors. These changes in oil price affect the global economy in diverse ways depending on the main factor(s) generating the change. [18] contend that the traditional demand and supply shocks have not fully explained the recent drop in oil prices in recent time but that the unexplained part entails variations in expectations and uncertainty of oil demand and supply.

As the oil price continued to decline, the major concern therefore, is the ability of these oil-exporting countries, to continue with their economic development aspirations in this new paradigm shift to oil revenue, necessitated by the decreasing crude oil price. The power of OPEC³ known as "Call-on-OPEC" in petroleum economics has always been to shore up prices, but in this new price shock, the collusive power of these oligopoly has failed as OPEC could no longer control the production quotas of its members which has also contributed to the recent persistent fall in oil price due to excess supply of crude oil in the world's oil market. The discovery and improvement in the US shale production through technological advancement in horizontal drilling and hydraulic fracturing is also a contributory factor to high oil production which has inadvertently led to the drastic reduction of the quantity of US oil-importation from OPEC [89]. More so, given that the world is progressively undergoing transition, from a hydrocarbon-based economy to the one based on a more sustainable form of energy as most economies of the world are embracing the renewable sources of energy which is assumed to be environmentally friendly [12]. All these have attributed to the persistent decrease in oil price which is adversely affecting the revenues of these oil exporting countries, as such, the main purpose of the research is to evaluate the consequences of declining oil revenue on the economic performance of Nigeria, Venezuela and Norway for a comparative analysis. It also examined the effect of declining oil revenue on the macroeconomic variables of these economies and also contributes immensely to the existing literature.

This research, however contributes to existing literature in diverse ways because the relationship between oil price and economic activity have been examined by different researchers using various economic techniques but most of the related studies center mainly on the impact of increasing oil price on the examined economies [74], [10], [9], [98], [53], [106], [43], [42], [41], [40], [39], [55], [66]. These authors arrive at the same conclusion that high oil prices adversely affect economic activities while decreasing oil prices have positive impact on businesses, which then shows that the economies examined by these studies are developed and oil importing nations.

However, the main emphasis of other related studies is on causative issues and the relationship between government revenue and government expenditures [5], [68], [61], [54], [71].

Other related studies are mainly historical in nature such as: [30], [47], [46], [43], [95], [65] who examined the impact of declining oil price on the Venezuela's macro economy, they concluded that declining oil price has adverse effect on Venezuela but there was no statistical analysis carried out to support such claim.

Methodologically, most of the previous related empirical studies mainly employed the use of Structural Vector Autoregression (SVAR) Models for the analysis of oil price fluctuations [98], [21], [26]. The SVAR estimation technique is revealed to be inadequate because of its inability to capture the effect of declining oil price [79], [59].

However, the above outlined among others are the areas in which this research contributes to existing literature on the comparative analysis of the impact of declining oil revenue on net oil producers/exporters that are highly oil dependent nations across the globe: Nigeria (West Africa), Venezuela (North America) and Norway (Northern Europe). The period under study is for 41 years (1981-2021) which has coincided with the period of persisted changes in oil prices all over the world. Hence, is considered to be the best period to examine in this study.

LITERATURE REVIEW

Among economists and politicians alike, the crucial role of oil in the global economy has attracted lots of consideration [31], [34], [14]. Many studies are addressing the issue as to whether there is a link between oil price fluctuations and macroeconomic variables. The pioneering work on the US economy was carried out by [39], who found that oil was the most vital instrument responsible for almost all the recessions in the US, while [16] found no relationship between oil price and macroeconomic variables [34]. Some decades ago, the fluctuations in oil price had coincided with most of the global economic changes like the global recessions, inflation and others [40]. It has caused most researchers to examine the relationship existing among these variables over time. The changes in these variables are highly unpredictable as both the oil importers as well as the oil exporters are affected differently [4]. The related empirical studies are examined under the following sub-sections: government revenues and expenditures linkage; increasing oil revenues in oil-exporting countries and oil revenues decline in oil-exporting countries.

A. Government Revenues and Expenditures Linkage

In line with the Keynesian paradigm, the role of government is paramount to any nation. Unlike the classical paradigm where a minimum level of government intervention in an economy prevails. Revenues, expenditures and fiscal policy are the most fundamental instruments of government intervention in an economy [63], [25]. [96] supports the above philosophy and believes that the economies that succeed without giving credence to its government are highly insignificant. The increasing budget deficits in both developed and developing economies has culminated into a serious debate between economists and politicians alike. Several economists such as [17], [83] and [36] have argued the need to investigate the causal relationship between revenue and expenditure in an economy.

Although, there is no consensus among numerous empirical studies available on the linkage between these two variables. There is evidence of unidirectional causality in some studies which runs from revenue to expenditure which aligns with the revenue-spend-hypothesis. [68] examined the causality between income and expenses in Botswana and found that there is a negative and unidirectional causality running from revenues to expenditures which support the revenue-and-spend hypothesis. Consistently, [67] investigated this relationship for the Pakistan economy, and the result supports the revenue-and-spend hypothesis. In using the Autoregressive Distributed Lag (ARDL) test for the Nigerian economy, [7] confirmed the revenue-and-spend hypothesis.

Similarly, [24] investigation for Sri Lanka reveals the existence of spend-and-revenue hypothesis. [61] examined the revenue and expenditure causality and found that a decrease in government spending would solve the problem of the budget deficit in Serbia. The result, however, supports the spend-and-revenue hypothesis. Using Grander causality and VECM for the Jordan economy, [5] found a bidirectional causality running between revenues and expenditures in Jordan, which implies that the government make its income and expenditure decisions simultaneously. However, the main emphasis of most of these studies is on causative issues and the relationship between the variables (government revenues and government expenditures) and not on the effect of declining oil revenue of oil exporting countries.

B. Increasing Oil Revenues in Oil Exporting Countries

The net impact of increasing oil revenues on the real GDP is mainly an empirical issue due to its opposite effects on both oil-importing and oil-exporting economies [22]. The highest percentage of the government revenue is mainly from oil, and

as such, the volatility of oil revenues is highly driven by oil price fluctuations [92]. Most oil-exporting countries depend mainly on oil revenues for the finance of government spending and importation of goods and services [21], [33]. Most of the studies concluded that, increasing oil revenues, due to increasing oil prices led to economic growth acceleration in most of the oil-exporting countries [62], [53], [6], [25], [49], [70], [105], [2], [82], [45] and [26], in using the SVAR analysis, found both positive and negative oil shock have opposite effects on the output growth of the Iranian economy. The real shock has a positive but limited effect on the economy while the negative shock hurts the Iranian economic performance. On the contrary, [22] explored this relationship for the GCC states and the Iranian economy using panel cointegration approach. The study reveals that the long-run oil elasticities for the GCC countries exceed those of the Iranian economy. It is an indication that the high oil revenues may not have been wisely utilized to yield the expected growth in Iran. Also, [33] carried out an analysis of the dynamic effects of oil shocks in Iran for 48 years (1959-2007) and found that the military and security expenditures respond promptly to oil revenue shocks, but the impact on the growth of the economy was not specified. Using a multivariate VAR approach, [23] found that oil price shocks have a significant effect on economic growth and inflation in the Chinese economy.

The main period under consideration in the studies is the period of increasing oil revenue due to oil price increase, which centers mainly on causative issues and relationships among variables. Although the studies relates to oil exporters, but the effects of declining oil revenues on the budgets of oil exporters and how these nations would be able to meet with the economies budgetary requirements were not under consideration.

C. Oil Revenues Decline in Oil Exporting Countries

From the perspective of decreasing oil price leading to oil revenue decline, [31], [30], [28], [29], [27], [22] maintain that as increasing oil price leads to oil revenue increase, decreasing oil price on the other hand drastically reduce the base of income of oil-exporting economies whose primary source of income lies on oil export. The fall in oil prices causes severe strain to the oil exporters' finances as it causes a significant loss in revenues [35]. Consequently, the monthly price of Brent crude oil price fell to an average of 65% between June 2014 and March 2016. It continues fluctuating and declining even till date (17th of July, 2024) which remain an issue of concern for most oil-exporting countries.

In related literature, there is no consensus as to the fundamentals of the fall in oil price even though most studies concluded that many factors are responsible for the sharp decline. In that regard, [56] in examining the importance of oil revenues to oil-exporting countries, carried out a descriptive study on the impact of low oil prices of oil-exporting countries. The descriptive statistics indicate the vulnerability of oil-exporting countries to low oil prices. [69] concluded that increasing and decreasing oil prices have the opposite effect on oil-exporting economies. Consistently, [47] in the examination of the implications of lower oil prices found that lower oil prices are beneficial to net oil importers and leads to real income losses to net oil exporters. The study further outlined the trends and the causes of the fall in oil prices. In line with the above, [65] in examining the impact of oil price decline in Venezuelan economy maintain that the decline in oil revenue base brought about the increase in the economy's foreign debt, shortages of essential goods and high rate of political instability in the economy.

[90] examined the impact of falling oil revenue in Nigeria and found that the drastic decline in oil revenue has undermined economic progress as GDP growth rate dropped to its lowest level in fifteen years bringing the possibility of a recession in the country. [1] also examined the impact of the global fall in oil price on Nigerian oil revenues. The study concluded that the oil sector serves as the instrument of growth and development in the Nigerian economy and as such, the global fall in oil prices have a significant impact on the oil revenues and prices in Nigeria.

[105] examined the effect of oil price plunge on the Middle East and North African (MENA) countries and concluded that oil price decline leads to contraction of the economies and it is more likely to have a positive effect on inflation. [95] examined the declining oil revenues in Gulf Cooperation Council (GCC states) and concluded that the over-dependency on oil revenues brought about the chronic budget deficits and growing unemployment among the nationals. Other related descriptive and historical studies are those of [30], [60], [99]. All the series of studies by [43], [42], [41], [40], [39] concentrate more on the impact of increasing oil price on developed and oil importing nations.

However, the above studies are perfectly related as the emphasis is on the impact of declining oil revenues on oil-exporting economies, but the studies are mainly descriptive and historical.

II. METHODOLOGY

The key variables inherent in this study are mainly time series of macroeconomic variables which include: Actual Government Revenue (AREV), Actual Government Expenditures (AEXP), Oil Price (OILP), Gross Domestic Product (GDP), External Reserves (EXTR), Inflation Rates (INFR), Exchange Rates (EXCR) and Unemployment Rates (UEMR). There are two exogenous variables in the model, OILP and EXCR. Oil price is the main independent variable while the exchange rate, which is also an independent variable serves more as a control variable in the model. These variables were sourced from the World Bank, Central Bank of Nigeria (CBN), National Bureau of Statistics (NBS), Banco Central De Venezuela, Venezuela National Institute of Statistics, and Statistics Norway. [73] demonstrated that most time series variables are usually non-stationary and capable of generating serious issues in the estimation relationships between economic variables.

The primary sources of non-stationarity are unit roots and so, engaging time series with unit roots in any regression analyses would undoubtedly yield misleading results. As a result of the above, the unit root properties of all the macroeconomic variables used for analyses in this study were tested first, using Augmented Dickey-Fuller (ADF), [20] and Phillip-Perron (PP), [85] for robustness which has enabled us to understand how many times some of the variables were differenced to become stationary. Although both methods produce similar results, the Augmented Dickey-Fuller (ADF) test is often considered to be more superior over the Phillips-Perron (PP) test mainly due to its simple applicability and popularity [73]. Hence, both were used for robustness.

The unit root tests for Nigeria, Venezuela and Norway are as presented in Appendix A.

A. Model Specification and Estimation Technique

As shown in the unit root tables for Nigeria, Venezuela and Norway, most of the series are either stationary at level "I (0)" or stationary at first difference, "I(1)" for each country. The stationarity of the variables at different orders (i.e. I(0) and I(1)) but not I(2) supports the use of the ARDL estimation technique. Eviews 10 statistical package was employed, which automatically determine the lag lengths using the Schwarz Information Criteria (SIC).

However, the Autoregressive Distributed Lag (ARDL) estimation technique is employed for the analysis based on the outcome of the unit root tests, due to the relatively small sample size of the data and also because of its numerous advantages. [84], [72] outlined several strengths, which the ARDL bounds test cointegration and ECM method have over the traditional Engel-Granger and Johansen approach. The method helps to prevent the endogeneity problem and also can produce both the long-run and the short-run estimates of the model concurrently. Also, [62], [84] maintain that the ARDL bounds methods are not affected when dummy variables are included in the model. More so, the variables of the model could have different lag lengths when using the ARDL technique, but this is not obtainable when using the conventional Johansen method of cointegration for analysis. It is also assumed that the sample size of the variables is relatively small for it to produce viable results.

B. Estimation of the Underlying ARDL Model

In general, ARDL can be derived from the following functional equations: Given that:

$$Y_{t} = f(X_{1t} \text{ and } X_{2t})$$

$$(1)$$

Where:

 X_{1t} : is a vector of endogenous variables

 X_{2t} : is a vector of exogenous variables

 Y_t : is any dependent variable from the vector of endogenous variables (X_{1t})

A standard error correction model (ECM) is specified as follows:

$$\Delta Y_{t} = \beta_{0} + \sum_{i=1}^{p} \beta_{1} \Delta Y_{t-i} + \sum_{i=0}^{q_{a}} \beta_{j} \Delta X_{1t-i} + \sum_{i=0}^{r_{b}} \theta_{k} \Delta X_{2t-i} + \varphi ECT_{t-1} + \mathcal{U}_{t}$$
(2)

(a = 1, 2, 3, ..., n)

$$(b=1,2,3,\dots,n)$$

$$(k = 1, 2, 3, ..., n)$$

$$(j = 1, 2, 3, ..., n)$$

To specify the general ARDL, we replace the φECT_{t-1} with all variables in the model lagged once in level or log-level forms.

Let
$$X = X_{1t} \& X_{2t}$$

۵

$$\Delta Y_{t} = \beta_{0} + \sum_{i=1}^{p} \beta_{1} \Delta Y_{t-i} + \sum_{i=0}^{q_{a}} \beta_{j} \Delta X_{t-i} + \lambda_{k} X_{t-i} + \mathcal{U}_{t}$$
 (3)

Hypothesis one

$$H_1$$
: (AREV and OILP) = α

$$H_{1.0}$$
 $\alpha_3 \neq 0$

In functional form, the relationship between AREV and OILP could be specified as follows:

$$AREV = f(AEXP, GDP, EXTR, INFR, UEMR; OILP, EXCR)$$

Hypothesis two

 H_2 : (AEXP and OILP) = β

 $H_{2.0} \beta_3 \neq 0$

AEXP = f(AREV, GDP, EXTR, INFR, UEMR; OILP, EXCR)

Hypothesis three

 H_2 : (GDP and OILP) = β

 $H_{3.0}$ $\beta_3 \neq 0$

GDP = f(AREV, AEXP, EXTR, INFR, UEMR; OILP, EXCR)

Hypothesis four

 H_4 : (EXTR and OILP) = θ

 $H_{4.0}$ $\theta_3 \neq 0$

EXTR = f(AREV, AEXP, GDP, INFR, UEMR; OILP, EXCR)

Hypothesis five

 H_5 : (INFR and OILP) = π

 $H_{5.0}$ $\pi_2 \neq 0$

INFR = f(AREV, AEXP, GDP, EXTR, UEMR; OILP, EXCR)

Hypothesis six

 H_6 : (UEMR and OILP) = π

 $H_{6.0} \rho_3 \neq 0$

UEMR = f(AREV, AEXP, GDP, EXTR, INFR; OILP, EXCR)

The ARDL model for each of the variables are as specified below:

$$\begin{split} \Delta lnAREV_t &= \alpha_0 + \sum_{i=1}^p \alpha_1 \Delta lnAREV_{t-i} + \sum_{i=0}^q \alpha_2 \Delta lnAEXP_{t-i} + \sum_{i=0}^r \alpha_3 \Delta lnOILP_{t-i} + \sum_{i=0}^s \alpha_4 \Delta lnGDP_{t-i} \\ &+ \sum_{i=0}^u \alpha_5 \Delta lnEXTR_{t-i} + \sum_{i=0}^v \alpha_6 \Delta lnINFR_{t-i} + \sum_{i=0}^w \alpha_7 \Delta lnUEMR_{t-i} + \sum_{i=0}^z \alpha_8 \Delta lnEXCR_{t-i} \\ &+ \lambda_1 lnAREV_{t-1} + \lambda_2 lnAEXP_{t-1} + \lambda_3 lnOILP_{t-1} + \lambda_4 lnGDP_{t-1} + \lambda_5 lnEXTR_{t-1} + \lambda_6 lnINFR_{t-1} \\ &+ \lambda_7 lnUEMR_{t-1} + \lambda_8 lnEXCR_{t-1} + \lambda_9 D + U_{tt} \end{split} \tag{4}$$

$$\begin{split} \Delta lnAEXP_t &= \beta_0 + \sum_{i=1}^p \beta_1 \Delta lnAEXP_{t-i} + \sum_{i=0}^q \beta_2 \Delta lnAREV_{t-i} + \sum_{i=0}^r \beta_3 \Delta lnOILP_{t-i} + \sum_{i=0}^z \beta_4 \Delta lnGDP_{t-i} \\ &+ \sum_{i=0}^u \beta_5 \Delta lnEXTR_{t-i} + \sum_{i=0}^v \beta_6 \Delta lnINFR_{t-i} + \sum_{i=0}^w \beta_7 \Delta lnUEMR_{t-i} + \sum_{i=0}^z \beta_8 \Delta lnEXCR_{t-i} \\ &+ \lambda_1 lnAREV_{t-1} + \lambda_2 lnAEXP_{t-1} + \lambda_2 lnOILP_{t-1} + \lambda_4 lnGDP_{t-1} + \lambda_5 lnEXTR_{t-1} + \lambda_6 lnINFR_{t-1} \\ &+ \lambda_7 lnUEMR_{t-1} + \lambda_8 lnEXCR_{t-1} + \lambda_9 D + U_{tII} \end{split} \label{eq:delta_to_table_to_tab$$

$$\begin{split} \Delta lnGDP_t &= \gamma_0 \sum_{i=1}^p \gamma_1 \Delta lnGDP_{t-i} + \sum_{i=0}^q \gamma_2 \Delta lnAREV_{t-i} + \sum_{i=0}^r \gamma_3 \Delta lnOILP_{t-i} \sum_{i=0}^z \gamma_4 \Delta lnAEXP_{t-i} + \sum_{i=0}^u \gamma_5 \Delta lnEXTR_{t-i} \\ &+ \sum_{i=0}^v \gamma_6 \Delta lnINFR_{t-i} + \sum_{i=0}^w \gamma_7 \Delta lnUEMR_{t-i} + \sum_{i=0}^z \gamma_9 \Delta lnEXCR_{t-i} + \lambda_2 lnAREV_{t-1} + \lambda_2 lnAEXP_{t-1} \\ &+ \lambda_3 lnOILP_{t-1} + \lambda_4 lnGDP_{t-1} + \lambda_5 lnEXTR_{t-1} + \lambda_6 lnINFR_{t-1} + \lambda_7 lnUEMR_{t-1} \\ &+ \lambda_9 lnEXCR_{t-1} + \lambda_9 D + \mathcal{U}_{tIII} \end{split} \tag{6}$$

$$\begin{split} \Delta lnEXTR_t &= \theta_0 \sum_{i=1}^p \theta_1 \Delta lnEXTR_{t-i} + \sum_{i=0}^q \theta_2 \Delta lnAREV_{t-i} + \sum_{i=0}^r \theta_3 \Delta lnOILP_{t-i} \sum_{i=0}^s \theta_4 \Delta lnAEXP_{t-i} \\ &+ \sum_{i=0}^u \theta_5 \Delta lnGDP_{t-i} + \sum_{i=0}^p \theta_6 \Delta lnINFR_{t-i} + \sum_{i=0}^w \theta_7 \Delta lnUEMR_{t-i} + \sum_{i=0}^z \theta_8 \Delta lnEXCR_{t-i} \\ &+ \lambda_1 lnAREV_{t-1} + \lambda_2 lnAEXP_{t-1} + \lambda_3 lnOILP_{t-1} + \lambda_4 lnGDP_{t-1} + \lambda_5 lnEXTR_{t-1} + \lambda_6 lnINFR_{t-1} \\ &+ \lambda_7 lnUEMR_{t-1} + \lambda_8 lnEXCR_{t-1} + \lambda_9 D + \mathcal{U}_{tly} \end{split} \label{eq:delta_tl}$$

$$\begin{split} \Delta lnINFR_t &= \pi_0 \sum_{i=1}^p \pi_1 \Delta lnINFR_{t-i} + \sum_{i=0}^q \pi_2 \Delta lnAREV_{t-i} + \sum_{i=0}^r \pi_3 \Delta lnOILP_{t-i} \sum_{i=0}^s \pi_4 \Delta lnAEXP_{t-i} \\ &+ \sum_{i=0}^u \pi_5 \Delta lnGDP_{t-i} + \sum_{i=0}^v \pi_6 \Delta lnEXTR_{t-i} + \sum_{i=0}^w \pi_7 \Delta lnUEMR_{t-i} + \sum_{i=0}^z \pi_8 \Delta lnEXCR_{t-i} \\ &+ \lambda_1 lnAREV_{t-1} + \lambda_2 lnAEXP_{t-1} + \lambda_3 lnOILP_{t-1} + \lambda_4 lnGDP_{t-1} + \lambda_5 lnEXTR_{t-1} + \lambda_6 lnINFR_{t-1} \\ &+ \lambda_7 lnUEMR_{t-1} + \lambda_8 lnEXCR_{t-1} + \lambda_9 D + \mathcal{U}_{tv} \end{split}$$

$$\begin{split} \Delta lnUEMR_t &= \rho_0 \sum_{i=1}^p \rho_1 \Delta lnUEMR_{t-i} + \sum_{i=0}^q \rho_2 \Delta lnAREV_{t-i} + \sum_{i=0}^r \rho_2 \Delta lnOILP_{t-i} \sum_{i=0}^s \rho_4 \Delta lnAEXP_{t-i} \\ &+ \sum_{i=0}^u \rho_5 \Delta lnGDP_{t-i} + \sum_{i=0}^v \rho_6 \Delta lnEXTR_{t-i} + \sum_{i=0}^w \rho_7 \Delta lnINFR_{t-i} + \sum_{i=0}^z \rho_8 \Delta lnEXCR_{t-i} \\ &+ \lambda_1 lnAREV_{t-1} + \lambda_2 lnAEXP_{t-1} + \lambda_2 lnOILP_{t-1} + \lambda_4 lnGDP_{t-1} + \lambda_5 lnEXTR_{t-1} + \lambda_6 lnINFR_{t-1} \\ &+ \lambda_7 lnUEMR_{t-1} + \lambda_9 lnEXCR_{t-1} + \lambda_9 D + U_{tVI} \end{split} \label{eq:def_def_energy}$$

Where

ECM = the error correction term lagged for one period;

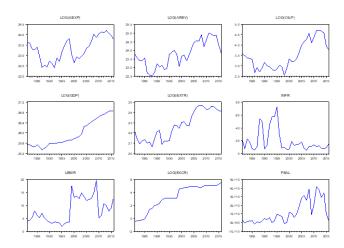
 $\varphi=$ the coefficient for measuring the speed of adjustment

 $\Delta = the \ first \ differencing \ operator$

 $\alpha,\beta,\gamma,\theta,\pi,\rho$ = the coefficients of the shortrun models

 $\lambda = the\ coefficient\ of\ the\ longrun\ models$

D = the dummy variable used to capture oil price decline


However, the Error Correction Models (ECM) are estimated in order to analyze the short run determinants of the effect of declining oil price on the macroeconomic variables outlined for each of the economies under study. It also helps in determining the speed of adjustment over time.

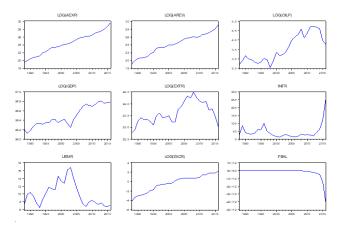
III. EMPIRICAL RESULTS

A. Line Graphs and Descriptive Statistics of the Data

All the macroeconomic variables were analysed graphically to determine if there are pronounced visual trends or not and then subsequently, empirically tested using intercept only, intercept and trend depending on the visual analyses obtained [93], [94]. However, the line graphs for each of the economies as presented in Figure 4.1 for Nigeria; Figure 4.2 for Venezuela and Figure 4.3 for Norway indicate that all the variables of the models have intercepts on the vertical axis and are trending upwards as well; except the inflation rate, signifying that they are non-stationary at level. The line graphs and the descriptive statistics of the data are as presented below:

Figure 4. 1: Multiple Line Graphs for Nigeria

Source: Authors' construction using E-Views 10.0


Table 4. 1: Descriptive Statistics of the Data for Nigeria

	Min	Max	Mean	Std. Dev.
OILP (\$/barrel)	12.7	111.7	41.8	31.1
AEXP (\$b)	5.4	33.0	15.5	8.4
AREV (\$b)	6.1	72.3	27.0	19.7
GDP (\$b)	101.0	464.0	217.0	121.0
EXCR (N/\$)	0.6	253.5	76.5	71.9
EXTR(\$b)	0.9	53.6	16.6	18.2
INFR (%)	5.4	72.8	19.6	17.7
UEMR (%)	1.9	19.7	8.2	4.8

Source: Authors' construction using E-Views 10.0

The descriptive statistics of key macro indicators for Nigeria are presented in Table 4.1. From the table, oil price ranged from \$12.7 per barrel to \$111.7 per barrel. The large dispersion suggests that oil price fluctuated mainly over the past three decades. On average, the oil price was \$41.8 per barrel with a standard deviation of \$31.1 per barrel. Government expenditure ranged from \$5.4 billion to \$33 billion. The average expenditure incurred by the government over the past three decades stood at \$15.5 billion, with a standard deviation of \$8.4 billion. On the revenue side, it ranged from \$6.1 billion to \$72.3 billion, while the average revenue generated by the government was \$27.0 billion with a deviation of \$19.7 billion. This implies that the revenue generated over the past three decades exceeded average government spending. Gross Domestic Product (GDP) ranged from \$101.0 billion to \$464.0 billion. On average, GDP stood at \$217.0 billion with a standard deviation of \$121.0 billion. The minimum exchange rate was 0.9 N/\$, and the maximum was 253.5N/\$. The wide dispersion implies that the Naira has been largely devalued over the past three decades. The total reserves accumulation ranged from \$0.9 billion to \$53.6 billion. The average reserve accumulated over the past three decades was \$16.6 billion with a deviation of \$18.2 billion. Inflation ranged from 5.4% to as high as 72.8%. On average, consumer prices grew at 19.6%, with a deviation of 17.7%. The unemployment rate was low at 1.9% and high at 19.7%, over the past three decades. The average unemployment rate was 8.2%, with a deviation of 4.8%.

Figure 4. 2: Multiple Line Graphs for Venezuela

Source: Authors' construction using E-Views 10.0

Table 4. 2: Descriptive Statistics of the Data for Venezuela

	Min	Max	Mean	Std. Dev.
OILP (\$/barrel)	12.7	111.7	45.5	33.5
AEXP (\$b)	0.3	8260.0	559.0	1600.0
AREV (\$b)	0.2	4150.0	319.0	809.0
GDP (\$b)	221.0	438.0	326.0	71.4
EXCR (VEF/\$)	0.0	9.3	2.0	2.4
EXTR (\$b)	7.8	43.1	19.8	9.4
INFR (%)	12.5	254.9	46.7	47.7
UEMR (%)	6.6	16.8	9.9	2.9

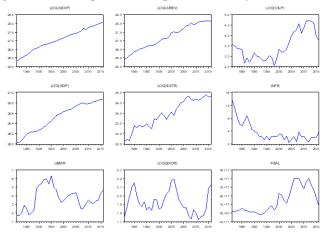

Source: Authors' construction using E-Views 10.0

Table 4.2 presents the descriptive statistics of key macro indicators for Venezuela. Global oil price ranged from \$12.7 per barrel to \$111.7 per barrel. On the average, oil price stood at \$45.5 per barrel, with a deviation of \$33.5 per barrel. The least government spending in Venezuela was \$0.3 billion, and the highest was \$8260 billion. On the average government spending was \$559 billion, with a deviation of \$1600 billion. This is lower compared to spending in Norway, but much

higher compared to spending in Nigeria. Government revenue ranged from \$0.2 billion to \$4,150 billion. On average, government revenue was \$319 billion, with a deviation of \$809 billion.

Similarly, Venezuelan government-generated less revenue compared to Norway, but much higher revenue compared to Nigeria. However, Venezuela's relatively high revenue could probably be as a result of its highest oil reserves in the whole world [80]. GDP ranged from \$221 billion to \$438 billion, with a mean and standard deviation of \$326 billion and \$71.4 billion. External reserve ranged from \$7.8 billion to \$43.1. On the average external reserves stood at \$19.8 billion, with a deviation of \$9.4 billion. Also, the exchange rate ranged from 0VEF/\$ to 9.3VEF/\$ and had an average of 2.0VEF/\$ with a standard deviation of 2.4VEF/\$. Inflation rate hovered around 12.5% to 254.9%, with the average and deviation of 46.7% and 47.7% respectively. The unemployment rate was low at 6.6% and high at 16.8%. The average unemployment rate was 9.9%, with a standard deviation of 2.9%.

Figure 4. 3: Multiple Line Graphs for Norway

Source: Authors' construction using E-Views 10.0

Table 4. 3: Descriptive Statistics of the Data for Norway

	Min	Max	Mean	Std.
	141111	IVICA	ivican	Dev.
OILP	12.7	111.7	41.8	31.1
AEXP (\$b)	159.0	1560.0	684.0	409.0
AREV (\$b)	176.0	1680.0	827.0	525.0
GDP (\$b)	202.0	470.0	341.0	87.5
EXCR (Krone/\$)	5.6	9.0	6.9	0.9
EXTR(\$b)	6.7	64.8	31.3	19.0
INFR (%)	0.5	13.6	3.7	3.0
UEMR (%)	1.7	6.3	3.7	1.3

Source: Authors' construction using E-Views 10.0

The descriptive statistics of the key macroeconomic indicators for Norway are presented in Table 4.3. Global oil price ranged from \$12.7 per barrel to \$111.7 per barrel. The large deviation suggests that oil price fluctuated largely over the last three decades. On the average global oil price stood at \$41.8 per barrel, with a standard deviation of \$31.1 per barrel. Government expenditure in Norway ranged from \$159 billion to \$1560 billion. On the average, the Norwegian government expended \$684 billion, much higher compared to the average government expenditure in Nigeria and Venezuela. Government revenue was low at \$176 billion and high at \$1,680 billion, with an average and standard deviation of \$827 billion and \$525 billion respectively. It implies that the Norwegian government generated more revenue compared to the Nigerian government. Norwegian GDP ranged from \$202 billion to \$470 billion.

On the average, GDP was \$341 billion, with a deviation of \$87.5 billion. Domestic exchange rate ranged from 5.6 Norwegian Krone/\$ to 9.0 krone/\$. On the average, exchange stood at 6.9 krone/\$ with a deviation of 0.9 Krone/\$. The higher exchange rate relative to Nigerian Naira suggests that the Norwegian Krone was higher valued compared to the Nigerian naira. The external reserve was lowest at \$6.7 billion and the highest at \$64.8 billion. On the average, foreign reserves stood at \$31.3 billion, with a deviation of \$19.0 billion. The lowest inflation rate experience in Norway was 0.5%, and the highest was 13.6%. On average, the inflation rate was 3.7%, with a deviation of 3.0%. The unemployment rate was low at 1.7% and high at 6.3%, with the average and deviation of 3.7% and 1.3% respectively. This implies that Norway had a lower unemployment rate compared to Nigeria and Venezuela.

Averagely, both the government revenues and expenditures in Norway are higher relative to those of Nigeria and Venezuela. The descriptive statistics also reveal that the inflation and unemployment rates in Nigeria and Venezuela outweigh those of the Norwegian economy. The average reserves accumulation in Norway is higher when compared to those of Nigeria and Venezuela, which suggests that the Norwegian economy conserves its proceeds from their natural resources for future use. In addition, the average economic growth in Norway is also high relative to Nigeria and Venezuela which supports the findings of [46] that Norway does not fit into the categories of the countries identified with resource curse syndrome as the economy manages its petroleum resources effectively, leading to more economic growth and welfare of the populace.

B. Diagnostic Tests

In order to be consistent with the diagnosis of the econometric requirements before the estimation of the underlying ARDL model, all the diagnostic tests were adequately carried out. The diagnostic tests include structural and dynamic stability tests (CUSUM and CUSUM of Squares); Residual Diagnostics (Heteroscedasticity; Serial correlation, Normality tests); Coefficient Diagnostics (Long-Run Form and Bound Test, Error Correction Form (Short-Run Test)). The detailed results of all the diagnostic tests carried out in these analyses are presented in the appendix A.

The Stability tests shows that the regression equations are stable over time, during the sample period as the plotted graphs lie within the critical boundaries at 5% significant level; hence we cannot reject the null hypothesis (H_0) which states that all the coefficients of the Error Correction Models are stable at that level [100], [104] [11].

All the residual diagnostic tests which include the heteroscedasticity tests, the serial correlation tests and the normality tests were carried out. The results reveal that the variances of all the error term are constant over time while the Breusch-Godfrey LM test for serial correlation adopted shows that there is no serial correlation. [50] reveal that homoscedasticity and the independence of the observations of error term in any regression analysis would produce the wrong result under non-normality condition. Hence, the result reveal that there is no significant departure from normality was found.

In addition, the coefficient diagnostics entails both the long-run (Bound Test) and the Error Correction Form (Short-run Tests) which were carried out to empirically analyze the long-run relations and the short-run dynamics among the variables of the ARDL models of this research. The long-run relationship is based on the Wald-test (F-Statistics) with two critical values (lower and upper critical values), [84]. While the lower critical bound assumes that all the variables of the model are integrated at level I(0), indicating that there is no cointegration among the variables, the upper bound assumes that all the variables are integrated at first difference (1), which means that there is cointegration among the variables of the model. If the calculated F-Statistic is higher than the upper bound critical value, then it leads to the rejection of the null hypothesis (H₀), signifying that the variables of the model are cointegrated. Conversely, when the calculated F-statistic is below the lower bound critical value, then we cannot reject the null hypothesis (H₀), which indicate that there is no cointegration among the variables of the model. When the calculated F-statistic test lies between lower and upper bound critical values, the results are said to be inconclusive which means that the relationship between the variables of the model cannot be established [64].

The Error Correction Model (ECM), was developed in this study and this is to test for the speed of adjustment and to ascertain how the variables converge towards the equilibrium in the long run. All these tests were carried out and summarized in Appendix A4 for each of the countries.

C. Summary of Findings for the Nigerian Economy

For the Nigerian economy, the results reveal that declining oil revenues have a significant impact on government revenues, government expenditures and most of the macroeconomic variables of the nation. Specifically, declining oil revenue has a negative but significant impact on government revenue and external reserves in the short term while in the long run, a percentage increase in government expenditures exerts a positive and significant impact on government revenue which supports the spend-revenue hypothesis. Also, in the long run, the increasing oil price has a positive and significant impact on external reserves. However, this implies that the government revenue and external reserves of the Nigerian economy are highly responsive to oil price shocks and have direct proportionality. On the other hand, the declining oil price has a positive and significant impact on government expenditure in the short run. It implies that the economy either uses more of its reserves or resort to borrowing in order to finance its fiscal needs. In the long run, a percentage increase in government revenue also exerts a positive and significant effect on the government expenditures, which supports the revenue-spend hypothesis. On the contrary, declining oil price exerts a positive and insignificant effect on the inflation rate in the short run, while the exchange rate and external reserves were the main determinants of inflation in the long run.

D. Summary of Findings for the Venezuelan Economy

The results for the Venezuelan economy reveal that declining oil price have a negative and significant impact on government revenue, economic growth, and external reserves in the short run. While in the long run, unemployment is the main determinant of government revenue as government revenue decreases for a percentage increase in the rate of unemployment while external reserves and government revenue are the main determinants of economic growth. Also, a percentage increase in government expenditure shrinks the external reserves in the long run. The government, therefore, needs to adopt more alternative means of revenue generation rather than borrowing and depletion of its reserves in financing its budget deficits.

In addition, the results further show that declining oil revenue exerts a positive and significant effect on government expenditures and unemployment in both the short run and long run which also indicate that the government finance its budget deficits mainly through borrowing from both the internal and external sources. It also implies that declining oil revenue has a significant impact on the unemployment rate of the economy. More so, the result also shows that exchange rate and unemployment rate are the main determinants of inflation in both the short run and long run.

E. Summary of Findings for the Norwegian Economy

The results for the Norwegian economy reveal that declining oil revenue exhibits a dynamic impact on government revenue, government expenditure and on all the other macroeconomic variables inherent in the economic models, except the government expenditures which is insignificant in both the short run and long run. The findings further reveal that declining oil revenue has a negative and significant impact on government revenue and external reserves in the short run while in the long run, a percentage increase in oil price, exerts a positive and significant effect on both the government revenue and external reserves. It implies that oil price is directly proportional to government revenue and external reserves in Norway as an increase or decrease in oil price affects these variables proportionately. Also, the effect of declining oil price on the Norwegian's economic growth is insignificant in the short run, while external reserves and government revenues were the main determinants of growth in the long run. Nevertheless, the declining oil price has a positive and significant effect on inflation and unemployment in the short run. In the long run, its impact on the inflation rate is insignificant, while the inflation rate is the main determinant of the unemployment rate in the long run as well.

IV. RECOMMENDATIONS AND POLICY IMPLICATIONS

From the findings, the following policy implications and recommendations were deduced:

- **a.** For Nigeria, Venezuela and Norway, the declining oil price has a negative but significant effect on government revenues. That is, the revenues of each of these economies dropped significantly due to the decrease in oil price. However, this calls for good policy reforms to promote economic diversification in all countries that are highly dependent on oil revenue.
- **b.** The effect of declining oil price on the government expenditures of Nigeria and Venezuela is positive and significant but insignificant on the Norwegian government expenditures. The results further reveal that the budget deficits for Nigeria are mainly financed through internal and external borrowing while Venezuela carries out its deficit financing through borrowing and Seigniorage. However, just like the Norwegian economy, it would be necessary for governments in

countries like Nigeria and Venezuela to introduce some fiscal rules into the policy measures to help reshape the countries' spending habit to a specified percentage and ensure that such rules are strictly observed and implimented.

- c. The literature and findings reveal that the Norwegian economy has the capacity of avoiding the Paradox of Plenty (Resource curse syndrome) which has invariably affected most of the abundant resource economies due to some institutions and policies Norway put in place. Therefore, this study recommends that countries like Nigeria and Venezuela should give priority to policies that address the enhancement of human and social capital which is more about administrative and human capacity building. This should help to minimise the negative impact of resource abundance in such countries.
- **d.** Since Nigeria, Venezuela and Norway are blessed with other natural resources aside oil; it is recommended that the government of these countries encourage the development of other resources for the local industries. This could also help to reduce the rate of unemployment in countries like Nigeria, Venezuela and other similar countries.
- e. From the literature, it is evident that Nigeria is the only member of OPEC that still imports fuel and have spent billions of dollars over the years on the importation of fuel, which in turn increases the government expenditures as revealed from the results. Therefore, there is need for Nigerian and similar countries to also give priority to policies that would be geared towards the encouragement of local refineries across different parts of the country. This would drastically reduce the importation of fuel if not completely eradicated. The resultant effect could also create employment opportunities and generate more revenues since these parameters are adversely affected as oil price declines.
- **f.** Finally, since there is evidence of revenue-spend hypothesis and spend-revenue hypothesis, there is need for Nigeria and similar countries to consider determining the revenues and expenditures jointly since it could effectively help in restraining the budget deficits. Independent determination of the revenues and the expenditures would always metamorphose into high expenditures, which have been adversely affecting the oil-dependent economies.

V. APPENDICES

Table A.1 Unit Root Tests for Nigeria, Venezuela and Norway

Table A.1.1 Unit Root Test Results for Nigeria

		AUGMENTED DICKEY PHILLIPS-									
		FULLER TE					~ ~ ~ ~ ~ ~	RON TEST			
		FULLER IE	31 (AI	Dr)			(PPT				
			SS	Intercept	SS	-	SS	Intercept	SS		
		Intercept	33	& Trend	55	Intercept	33	& Trend	33		
AEXP		-1.4287 (-	I(1)	-2.5036	I(1)	-1.6442	I(1)	-2.5483	I(1)		
AEAP			WT)	2.2020	m)		M(T)	2.2.00	1(1)		
	Levels 1st	0.5571)		(0.3246)	ł	(-0.4500) -5.0695		(0.3047)	ł		
		-5.0703									
	Diff (A)	(0.0002)***		(0.0013).		(0.0002)		(0.0013).			
AREV	(Δ)	-1.5258	I(1)	-2.7351	I(1)	-1.5555-	I(1)	-2.7618-	I(1)		
AREV			W1)		1(1)	0.4942	f(T)	0.22	1(1)		
	Levels	(0.509)		(0.2296)	ł	-5.6847		-5.5691	ł		
		-5.6861									
	Diff (Δ)	(0.0000)***		(0.0003).		(0.00000).		(0.0003).			
EXCR	(Δ)		T/13	-1.3836	T/15	1.1539	7/15	-1.6077	7/15		
EXCK	, ,	1.3201	I(1)		<u>I(1)</u>		<u>I(1)</u>		<u>I(1)</u>		
	Levels	(0.9983)		(0.8483)	ł	(0.9972)		(0.7694)	-		
		-3.6446				-3.6461					
		(0.0099)***		(0.0194)		(0.0098).		(0.0203).			
EXTR		-0.7569	I(1)	-3.0458	I(1)	-0.6412	I(1)	-3.2476	I(1)		
EAIR	Levels	(0.8188)	MT)	(0.1353)	m ₁)	(0.8484)	M(I)	(0.092)	1(1)		
	1st	(0.8188)		-5.1938	ł	-6.1528		-5.9165	ł		
	Diff	-5.3132		(0.0009)		(0.0000)		(0.0001)			
	(Δ)	(0.0001)***		(0.0002)		***		***			
GDP	(Δ)	1.2298	I(1)	-2. 2842	I(1)	1.0614	I(1)	-2.2683	I(1)		
GDF	Levels	(0.9977)	W1)	(0.4311)	101)	(0.9964)	10,1)	(0.4392)	10.1)		
	1st	(0.55//)		-4.6559	ł	-4.3264	1	-4.6126	1		
	Diff	-4.3395		(0.0037).		(0.0017)		(0.0041)			
	(Δ)	(0.0016)***		***		***		888			
INFR	(4)	(0.00101	I(0)	-4.213	I(0)	-3.1537	I(0)	10.	I(0)		
11/11/		-3.2528	₩,o)	(0.0110)	100)	(0.0316)	400)	-3.064	100)		
	Levels	(0.0252)**		**		**		(0.1304)			
	1st	(8088008NV		-5.6834	ł	-9.1203	ł	-9.2336	ł		
	Diff	-5.7672		(0.0003)		(0.0000)		(0.0000)			
	(Δ)	(0.0000)***		***		***		***			
OILP	(4)	-1.1285	NS	-2.1248	I(1)	-1.1657	I(1)	-2.159	I(1)		
0121	Levels	(0.6934)	1110	(0.5147)	-V-/	(0.678)	₩-/	(0.4965)	€U-7		
	lst	(0.0554)		-5.4213	1	-5.5012	1	-5.421	1		
	Diff	-5.5017-		(0.0005)		(0.0001)		(0.0005)			
	(Δ)	0.0001		***		***		***			
UEMR	<u></u>	-2.0115	I(1)	-2.5197	I(1)	-1.9036	I(1)	-2.4906	I(1)		
	Levels	(0.2808)	ev-/	(0.3173)	-/-	(0.3269)	ev-/	(0.3305)			
	lst	(0.2000)		-6.4986	1	-6.7082		-6.5908	1		
	Diff	-6.606		(0.0000)		(0.0000)		(0.0000)			
	(Δ)	(0.0000)***		***		***		***			
	, LLJ	1.866868686A		100		100		100			

***, ** and *denote the significant level at 1%, 5% and 10% respectively

Source: Authors' Computation using E-Views 10.0

Table A.1.2 The Unit Root Test Result for Venezuela

		AUGMENTED (ADF)	DICK	EY FULLER TES	Т	PHILLIPS-PER	RON	TEST (PPT)	
		(ADF)	SS	Intercept &	SS	PHILLIPS-PER	SS	Intercept &	SS
		Intercept		Trend	~	Intercept	~~	Trend	~
AEXP	Levels	0.7017	J(1)	-1.088-	J(1)	0.6219	J(1)	-1.4327	J(1)
		(0.99)	Q-7	0.9133	α-/	(0.9878)	- ·	(0.8283)	α
	1st				1		1		
	Diff	-3.3295		-3.3107		-3.3295		-3.3107	
	(Δ)	(0.0234)**		(0.0859)*		(0.0234)**		(0.0859)*	
AREV	Levels	-0.456	1(1)	-2.4786-	J(1)	-0.4613	J(1)	-2.4786	1(1)
		(0.8857)		0.3352		(0.8847)		(0.3352)	
	1st								
	Diff	-4.1843		-3.953		-4.132		-3.8762	
	(Δ)	(0.0031)***		(0.0234)**		(0.0036)***		(0.0275)**	
EXCR	Levels	4.3278	NS	2.5425	J(1)	4.0762	J(1)	1.7404	1(1)
	1st	(1.00)		(1.00)		(1.00)		(1.00)	
	Diff	-0.1182-		3.6449		3.00		F 3505	
	(Δ)	0.9362		-3.6448 (0.0469)**		-3.86 (0.0068)***		-5. <u>3595</u> (0.0009)***	
EXTR	Levels	-1.7539-	J(1)	-0.2861	J(1)	-1.909	J(1)	-0.5557	J(1)
EAIR	Leveis	0.3945	(TT)	(0.987)	171)	(0.3236)	(TT)	(0.974)	MT)
	141	0.3343		(0.367)		(0.3230)	1	(0.374)	
	Diff	-3.9901		-4.5735		-3.9702		-4.5785	
	(Δ)	(0.0050)***		(0.0059)***		(0.0053)***		(0.0058)***	
GDP	Levels	-0.6605	J(1)	-2.6619	J(1)	-0.5882	J(1)	-2.3408	J(1)
		(0.8409)	~ .	(0.2586)	~ .	(0.858)	~ .	(0.4001)	~ .
	1st				1		1		
	Diff	-4.4635		-4.3774		-4.4531		-4.3614	
	(Δ)	(0.0016)***		(0.0092)***		(0.0016)***		(0.0095)***	
INFR	Levels	-1.0922-	J(1)	-0.4159-	<u>J(</u> 1)	-0.6204	J(1)	-0.6471	J(1)
		0.7039		0.9817		(0.8506)		(0.9676)	
	1st								
	Diff_	-4.6278		-5.3797		-4.7046		-5.3214	
	(Δ)	(0.0010)***		(0.0009)***		(0.0009)***		(0.0010)***	
OILP	Levels	-1.3124-	J(1)	-1.2191	<u>J(1)</u>	-1.3531	J(1)	-1.4665	<u>((</u> 1)
	141	0.6095		(0.8868)		(0.5903)	-	(0.8171)	
	Diff	-4.3832		-4.3613		-4.3384		-4.3212	
	(Δ)	(0.0019)***		(0.0095)***		(0.0021)***		(0.0104)**	
UEMR	Levels	-1.8178-	J(1)	-1.8762	J(1)	-1.4659	J(1)	-2.036	J(1)
O.L.VIII	LEVEIS	0.3643	α-/	(0.6399)	u-/	(0.5357)	0/	(0.5572)	ω±/
		0.3043		(5.0333)		(3.3337)		(0.3372)	
	1st	-4.0688		-3.9024		-4.0506]	-3.868	
	Diff	(0.0041)***		(0.0260)**		(0.0043)***		(0.0280)**	
	(Δ)								

Table A.1.3 Unit Root Test Result for Norway

		AUGMENT	ED DI	CKEY FULLI	ER TEST				
		(ADF)				PHILLIPS-P	ERRO	N TEST (PPT))
			SS	Intercept &	SS		SS	Intercept &	SS
		Intercept		Trend		Intercept		Trend	
AEXP		-3.0372	I(0)	-3.2302	I(0)	-2.7417	I(0)	-3.568	I(0)
	Levels	(0.0411)**		(0.0947)*		(0.0770)*		(0.0471)**	
	lst								
	Diff	-6.9214		-7.9568		-6.8275		-7.9013	
	(Δ)	(0.0000)***		(0.0000)***		(0.0000)***		(0.0000)***	\perp
AREV		-2.2276	I(1)	-1.4003	I(1)	-2.8199	I(0)	-1.3998	I(1)
	Levels	(0.2005)		(0.8439)		(0.0655)*	ļ	(0.844)	
	lst								
	Diff	-4.9323		-5.3479		-4.8439		-6.9206	
EXCR	(Δ)	(0.0003)***	I(0)	(0.0006)*** -3.1216	I(1)	(0.0004)***	T/33	(0.0000)***	I(1)
EXCR	١.,	-3.1465	f(n)		1(1)	-2.5768	I(1)		1(1)
	Levels	(0.0322)**		(0.1172)		(0.107)	ł	(0.2897)	1 1
	1st	4 1244		4.0406		2.0660		2 0602	
	Diff	-4.1244 (0.0028)***		-4.0486		-3.9669 (0.0042)***		-3.8692 (0.0243)**	
EXTR	(Δ)	-1 3258	I(1)	(0.0160)** -2.8316	I(1)	-1 3258	I(1)	-2.7933	I(1)
EAIR	Levels	(0.6069)	1(1)	(0.1959)	1(1)	(0.6069)	1(1)	(0.2088)	1(1)
	1st	(0.0009)		(0.1939)		(0.0009)	ł	(0.2088)	1 1
	Diff	-6.6245		-6.6748		-6.6376		-6.6955	
	(A)	(0.0000)***		(0.0000)***		(0.0000)***		(0.0000)***	
GDP	144	-1.8291	I(1)	-1.4682	I(1)	-2.2721	I(1)	-0.5206	NS
	Levels	(0.3608)	- V	(0.8215)	80-7	(0.1861)		(0.9778)	
	1st	(0.2000)	i	(0.0222)	1	(0.1001)	i	(0.0 0)	1 1
	Diff	-2.9083		-3.3367		-3.0149		-3.1952-	
	(Δ)	(0.0545)*		(0.0770)*		(0.0432)**		0.1019	
INFR		-2.9556	I(0)	-3.8091	I(0)	-2.7903	I(0)	-3.9113	I(0)
	Levels	(0.0489)**		(0.0275)**		(0.0697)*		(0.0218)**	
	lst				1		1		1
	Diff	-10.5441		-10.7476		-10.9633		-11.9205	
	(Δ)	(0.0000)***		(0.0000)***		(0.0000)***		(0.0000)***	
OILP		-1.144	I(1)	-2.0783	I(1)	-1.179	I(1)	-2.1202	I(1)
	Levels	(0.6875)		(0.54)		(0.6728)		(0.5176)	
	lst								
	Diff	-5.6267		-5.5531		-5.6263		-5.5529	
	(Δ)	(0.0000)***		(0.0003)***		(0.0000)***		(0.0003)***	
UEMR		-2.3965	I(1)	-2.325	I(1)	-2.5911	I(1)	-2.3364	I(1)
	Levels	(0.15)		(0.4103)		(0.1041)	1	(0.4048)	
	1st								
	Diff	-4.7694		-4.7123		-4.6832		-4.6077	
	(Δ)	(0.0005)***		(0.0031)***	l	(0.0006)***		(0.0040)***	\Box

***, ** and *denote the significant level at 1%, 5% and 10% respectively

Source: Authors' Computation using E-Views 10.0

Figure A.2 Structural and Dynamic Stability Tests for Nigeria, Venezuela and Norway (CUSUM Tests)

Fig. A.2.1 Nigeria

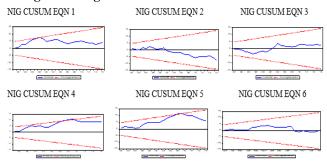


Fig. A.2.2 Venezuela

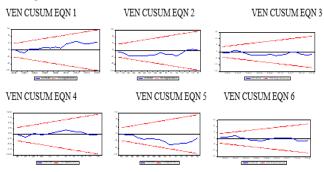
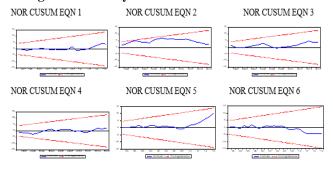



Fig. A.2.3 Norway

Source: Authors' Computation using E-Views 10.0

Figure A.3 Structural and Dynamic Stability Tests for Nigeria, Venezuela and Norway (CUSUM of Squares Tests)

Fig. A.2.1 Nigeria

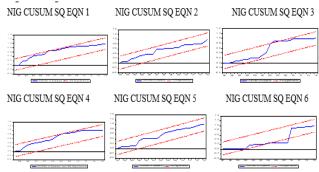


Fig. A.3.2 Venezuela

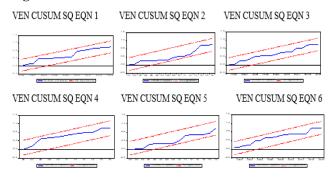
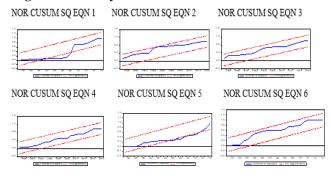



Fig. A.3.3 Norway

Source: Authors' Computation using E-Views 10.0

Tables A.4 Results

 $\textbf{Table A.4.1 Long run regression estimates of the impact of declining oil price on key macroeconomic indicators in Nigeria \\$

	AEXP	AREV	GDP	EXTR	INFR	UEMR
LOG(AR EV)	1.065***(0 .216)		0.175(0. 324)	- 0.024(0.32 1)	1.67(14.107)	4.482(8. 779)
LOG(AE XP)		0.673***(0 .187)	0.127(0. 285)	0.288(0.29)	- 4.037(12.82 7)	3.401(6. 952)
LOG(OI LP)	0.772***(0 .23)	0.148(0.25 2)	0.38(0.2 27)	0.532*(0.3 07)	9.595(13.53 1)	5.374(6. 075)
LOG(GD P)	0.784**(0. 368)	0.232(0.74)		0.473(0.46 9)	30.954(23.6 88)	
LOG(EX TR)	0.282(0.2)	0.016(0.14 4)	0.126(0. 209)		- 31.514***(7 .775)	2.329(3. 932)
INFR	0.009(0.00	0.001(0.00 4)	0.001(0. 005)	- 0.015***(0 .004)		0.007(0. 106)
UEMR	- 0.007(0.01 6)	- 0.027*(0.0 15)	0.003(0. 018)	0.021(0.01 5)	0.005(0.771	
LOG(EX CR)	- 0.289***(0 .078)	0.195(0.19 5)	0.144(0. 096)	0.298***(0 .086)	9.553**(4.2 63)	1.967(2. 225)
Oil dummy	No	No	No	No	No	No

Table A.4.2 Diagnostic test results for Nigeria

Diagnostics	AEXP	AREV	GDP	EXTR	INFR	UEMR
Normality	1.123(0.5	2.289(0.3	65.936(0.0	1.140(0.5	0.375(0.8	3.315(0.1
test, JB- test	70)	18)	00)	66)	29)	91)
Heteroskedast	1.359(0.2	0.116(0.7	0.052(0.82	0.230(0.6	2.615(0.1	0.011(0.9
icity	52)	36)	1)	35)	16)	17)
Serial	2.003(0.1	0.883(0.4	1.689(0.20	1.554(0.2	1.157(0.3	1.414(0.2
Correlation	57)	33)	7)	35)	32)	65)

***, ** and *denote the significant level at 1%, 5% and 10% respectively. Source: Authors' computation from ARDL analyses using E-views 10.0

Table A.4.3 Short-run regression estimates of the impact of declining oil price on key macroeconomic indicators in Nigeria

	AEXP	AREV	GDP	EXTR	INFR	UEMR
	-13.084***	1.024***	4.135***	1.529***	-0.061	285.019
C	(1.212)	(0.131)	(0.954)	(0.174)	(1.496)	(234.777)
		0.218*		0.71***	17.331***	
DL(AEXP)		(0.108)		(0.148)	(6.167)	
DL(AEXP(-		-0.464***				
1))		(0.106)				
		0.804***				
DL(OILP)		(0.077)				
DL(OILP(-		0.359***				
1))		(0.1)				
OILD						
		-0.406***	-0.044			5.003***
DL(EXCR)		(0.107)	(0.030)			(1.444)
DL(EXCR(-		-0.523***				
1))		(0.123)				
DL(EXTR(-				0.278***		
1))				(0.093)		
						-2.954**
DL(AREV)						(1.303)
					0.755000	
- ·	-0.519***	-0.699***	-0.182***	-0.975***	-0.765***	-0.508***
Ect	(0.044)	(0.105)	(0.043)	(0.114)	(0.089)	(0.106)
		1				
70			1	0.750	0.705	
R2	0.805	0.938	0.46	0.750	0.705	0.603
AdjR2	0.799	0.918	0.433	0.725	0.687	0.578
	136.315	47.245	13.974	30.005	38.300	
T -4-4		47.245				
F-stat	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	

Source: Authors' computation from ARDL analyses using E-views 10.0

Table A.4.4 Long-run regression estimates of the impact of declining oil price on key macroeconomic indicators in Venezuela

	AEXP	AREV	GDP	EXTR	INFR	UEMR
LOG(AE XP)		0.328(0.3 48)	0.168*(0.0 92)	- 4.367(4.1 41)	35.853(73.7 56)	3.34(3.746)
LOG(OI LP)	0.038(0.12 4)	0.339(0.2 92)	0.093**(0. 036)	2.787(3.0 3)	- 56.887**(2 6.625)	-0.3(1.359)
LOG(G DP)	1.335(1.14 8)	0.027(1.3 94)		- 10.02(12. 846)	- 349.173(25 2.73)	- 25.847***(4.502)
LOG(EX TR)	- 0.422***(0.137)	0.058(0.2 45)	0.039(0.03 6)		- 47.357(41.5 71)	0.821(1.049)
INFR	0(0.002)	0.008*(0. 004)	0(0)	0.019(0.0 27)		- 0.031*(0.01 5)
UEMR	- 0.102**(0. 041)	0.01(0.05 8)	- 0.026***(0.005)	- 0.295(0.3 27)		
LOG(EX CR)	0.142(0.22 2)	0.803(0.4 87)	0.039(0.04	3.272(3.6 04)	- 18.855**(8. 919)	- 0.282(2.086)
LOG(A REV)	1.078***(0.178)		0.007(0.07 3)	2.259(2.4 61)	11.013(79.1 97)	1.807(2.345
Oil dummy	No	No	No	No	No	No

Table A.4.5 Diagnostic test results for Venezuela

Diagnostics	AEXP	AREV	GDP	EXTR	INFR	UEMR
Normality test, JB- test	6.850	0.355	0.186	1.095	1.368	1.878
	(0.033)	(0.837)	(0.911)	(0.578)	(0.505)	(0.391)
Heteroskedasticity	0.410	0.357	0.713	0.049	0.002	0.629
	(0.528)	(0.556)	(0.406)	(0.827)	(0.964)	(0.435)
Serial Correlation	1.758	2.002	0.861	2.116	1.930	1.101
	(0.202)	(0.170)	(0.444)	(0.153)	(0.176)	(0.360)

***, ** and *denote the significant level at 1%, 5% and 10% respectively Source: Authors' computation from ARDL analyses using E-views 10.0

 $\textbf{Table A.4.6 Short-run regression estimates of the impact of declining oil price on key macroeconomic indicators in Venezuela \\$

	AEXP	AREV	GDP	EXTR	INFR.	UEMR.
С	27.785*** (1.919)	5.704** *(0.631)	18.562* **(1.10 1)	57.835 ***(5. 77)	9639.78 8(6524. 755)	540.747 ***(53. 653)
DLOG(AEXP)		0.526** *(0.082)	0.048** *(0.015)			0.891(0. 566)
DLOG(OILP)		0.405** *(0.051)				
OILD						
DLOG(GDP)						
DLOG(EXTR)			0.068** *(0.017			
DLOG(EXCR)				0.113(0.087)		2.419** *(0.589)
DLOG(AREV)					53.383* **(6.26 5)	
@TREND	No	No	Yes	No	No	No
CointEq(-1)*	0.621***(0.043)	- 0.446** *(0.049)	- 0.833** *(0.049	0.173* **(0.0 17)	- 0.515** *(0.058)	- 0.895** *(0.089)
R-squared	0.887	0.952	0.926	0.809	0.814	0.868
Adjusted R-squared	0.883	0.946	0.913	0.793	0.807	0.852
F-statistic	204.117 (0.000)	160.087 (0.000)	71.868 (0.000)	52.822 (0.000)		52.734 (0.000)

***, ** and *denote the significant level at 1%, 5% and 10% respectively Source: Author's computation from ARDL analyses using E-views 10.0

 $\textbf{Table A.4.7 Long-run regression estimates of the impact of declining oil price on key macroeconomic indicators in Norway \\$

	AEXP	AREV	GDP	EXTR	INFR	UEMR
LOG(AEXP)		0.532***(0 .073)	- 0.654***(0 .18)	- 4.831*(2. 655)	2.899(2.79 2)	20.182**(9 .269)
LOG(OILP)	- 0.193**(0 .08)	0.104***(0 .017)	0.033(0.03 1)	0.182(0.3 95)	2.227**(0. 981)	3.386(2.31 7)
LOG(GDP)	- 1.414**(0 .463)	1.066***(0 .194)		3.044(3.5 9)	0.721(8.67 9)	- 37.402*(19 .336)
LOG(EXTR)	0.13(0.13 5)	0.056(0.03	0.059(0.04 1)		3.385*(1.7 8)	9.206**(4. 187)
INFR	0.011(0.0 26)	0.012**(0. 006)	- 0.021***(0 .006)	- 0.007(0.0 58)		- 0.798**(0. 293)
UEMR	0.013(0.0 15)	- 0.008(0.00 8)	0.016(0.01	0.141(0.0 97)	- 0.361(0.26 8)	
LOG(EXCR)	0.213(0.2 18)	0.095*(0.0 49)	0.116(0.08 3)	0.706(0.9 54)	7.036***(2 .096)	21.073*(10 .838)
LOG(AREV)	1.238*(0. 606)		0.231*(0.1 1)	3.55(2.36 3)	- 10.199*(5. 161)	- 17.991(10. 458)
Control for oil	No	No	No	No	No	No

Table A.4.8 Diagnostic test results for Norway

Diagnostics	AEXP	AREV	GDP	EXTR	INFR	UEMR
	1.181	0.827	3.065	0.331	1.500	6.653
Normality test, JB- test	(0.554)	(0.661)	(0.216)	(0.848)	(0.472)	(0.036)
	0.229	1.328	0.386	0.204	2.252	0.027
Heteroskedasticity	(0.635)	(0.258)	(0.539)	(0.654)	(0.143)	(0.870)
	0.606	0.176	1.433	1.258	1.737	0.711
Serial Correlation	(0.572)	(0.840)	(0.268)	(0.309)	(0.200)	(0.512)
	No	No	No	No	No	No

***, ** and *denote the significant level at 1%, 5% and 10% respectively Source: Authors' computation from ARDL analyses using E-views 10.0

Table A.4.9 Short-run regression estimates of the impact of declining oil price on key macroeconomic indicators in Norway

	AEXP	AREV	GDP	EXTR	INFR	UEMR
	31.468***	-13.23***	10.327***	73.637***	69.89***	374.745***
C	(4.592)	(0.895)	(0.707)	(11.628)	(7.614)	(38.765)
			-0.056**		16.894***	-1.07
DLOG(AEXP)			(0.023)		(3.242)	(1.929)
	0.029					-12.831***
DsLOG(AEXP(-1))	(0.123)					(2.445)
	0.76***			1.699***		
DLOG(AREV)	(0.109)			(0.35)		
	-0.463***	0.162**		-1.473***		
DLOG(AREV(-1))	(0.138)	(0.063)		(0.335)		
	-0.113***	0.17***	0.003			3.039***
DLOG(OILP)	(0.025)	(0.011)	(0.003)			(0.385)
	-0.007	0:072***				1.618***
DLOG(OILP(-1))	(0.026)	(0.016)				(0.355)
OILD						
	-0.478				-41.954***	
DLOG(GDP)	(0.391)				(8.305)	
BT 00/08BT (10)	1.275**		0.167**			
DLOG(GDP(-1))	(0.432)		(0.066)		0.000	0.000
DI COSTITUTO	-0.089***		-0.002		0.075	-0.093
DLOG(EXTR)	(0.022)		(0.006)		(0.775)	(0.412)
DT 00 PT 00	0.06**					-3.84***
DLOG(EXTR(-1))	(0.026)					(0.487)
D/D/EED)	0.003					-0.247***
D(INFR)	(0.004)					(0.06)
D/DED/ IV	(0.003)					
D(INFR(-1))	0.004		-0.001	0.009		
D(UEMR)	(0.006)		(0.001)	(0.03)		
D(CEMIN)	0.00		-0.006***	(0.03)		-0.455***
D(UEMR(-1))	(0.005)		(0.001)			(0.115)
D(DENIEL-1))	(0.003)		(0.001)			-0.363***
D(UEMR(-2))						(0.107)
D(COSMING-2))	-0.109**			0.01	<u> </u>	6.199***
DLOG(EXCR)	(0.044)			(0.231)		(0.891)
DEOG(ESTOR)	-0.049			-0.808***		-3.708***
DLOG(EXCR(-1))	(0.051)	l	l	(0.251)		(0.91)
DECOMPOSITION (-0.915***	-0.763***	-0.289***	-0.547***	-0.845***	-0.557***
CointEo(-1)*	(0.134)	(0.051)	(0.02)	(0.087)	(0.091)	(0.058)
R-souzred	0.920	0.944	0.946	0.666	0.867	0.768
Adjusted R-squared	0.835	0.937	0.929	0.575	0.787	0.737
a required a coopulated	W. W. W.	123.293	55.231	7.390	V.101	0.122
F-statistic	10.815 (0.000)	(0.000)	(0.000)	(0.000)	10.863 (0.000)	24.794 (0.000)

***, ** and *denote the significant level at 1%, 5% and 10% respectively

Source: Authors' computation from ARDL analyses using

REFERENCES

- [1] A. Adamu, "The Impact of Global Fall in Oil Prices on the Nigerian Crude Oil Revenue and its Prices,". Proceeding of the Second Middle East Conference on Global Business Economics, Finance and Banking, 26(7), Pp. 1-18, March 2015.
- [2] O. A. Adesola and D. R. Adek "Impact of oil Revenue on Economic Development in Nigeria [1981–2012]," Journal of Social and Development Sciences, 5(2), Pp. 73-78, June 2014.
- [3] A. E. Akinlo, "How important is oil in Nigeria's economic growth?" Journal of Sustainable Development, 5(4), Pp. 165-179, September 2012.
- [4] A. M. Aliyan, "Effect of oil prices fluctuations on industrial productions in Iran," European Online Journal of Natural and Social Sciences, 2(4), Pp. 572-583, March 2013.
- [5] H. A. Al-Zeaud, "The Causal Relationship between Government Revenue and Expenditure in Jordan," International Journal of Management and Business Research, 5(2), Pp. 117-127, September 2015.
- [6] O. Aregbeyen and B. O. Kolawole, "Oil Revenue, Public Spending and Economic Growth Relationships in Nigeria," Journal of Sustainable Development, 1(8), Pp. 113-123, April 2015.
- [7] O. Aregbeyen, and T. M. Ibrahim, "The Causal Relationship Between Government Spending and Revenue in an Oil Dependent Economy: The Case of Nigeria," Available from: file:///C:/Users/Users/Users/Downloads/expenditure-revenue.pdf, February 2012.

- [8] R. Arezki, and O. Blanchard, "The 2014 oil price slump: Seven key questions". Available from: https://voxeu.org/article/2014-oil-price-slump-seven-key-questions, January 2015.
- [9] E. Balli, M. F. Tras and C. Sigeze, "Impact of oil price on turkish macroeconomic variables.', Journal of Economic and Social Development, 3(2), Pp. 51-58, September 2016.
- [10] C. Baumeister and L. Kilian, "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," The Journal of Economic Perspectives, 30(1), Pp. 139-160 doi: 10.1257/jep.30.1.139, Winter 2016.
- [11] R. L. Brown, J. Durbin, and J. M. Evans, "Techniques for testing the constancy of regression relationships over time," Journal of the Royal Statistical Society. Series B (Methodological). 37(2): Pp.149-192, February 1975.
- [12] Z. Caineng, et al., "Shale Gas Formation and Occurrence in China: An Overview of the Current Status and Future Potential," Acta Geologica Sinica, 90(4), Pp. 1249-1283. doi: 10.1111/1755-6724.12769, August 2016.
- [13] Central Intelligence Agency, "CIA The World Factbook," Available at: https://www.cia.gov/library/publications/the-world-factbook/ (Accessed: 12th March, 2024), 2020.
- [14] J. Cunado, and F. P. De Gracia, "Oil prices, economic activity and inflation: evidence for some Asian countries," The Quarterly Review of Economics and Finance, 45(1), Pp. 65-83, February 2005.
- [15] N. Cunningham, "Norway's Oil Decline Accelerating. Available at: http://oilprice.com/Energy/Crude-Oil/Norways-Oil-Decline-Accelerating.html, December 2014.
- [16] M. R. Darby, "The price of oil and world inflation and recessions," American Economic Review, 72, pp. 738-751, September 1982.
- [17] A. F. Darrat, A.F. "Tax and Spend, or Spend and Tax? An Inquiry into the Turkish Budgetary Process," Southern Economic Journal, 64(4), Pp. 940-956, April 1998.
- [18] T. Davig, N.C. Melek, J. Nie, A. L. Smith and D. Tuzemen, "Evaluating a year of oil price volatility," Economic Review (Kansas City), Pp. 1-5. September 2015.
- [19] G. Depersio, "How does the price of oil affect Venezuela's economy?" Available at: https://www.investopedia.com/ask/answers/032515/how-does-price-oil-affect-venezuelas-economy.asp, September 2018a.
- [20] D. A. Dickey, and W. A. Fuller, "Distribution of the Estimators for Autoregressive Time Series with a Unit Root," Journal of the American Statistical Association, 74(366), Pp. 427-431. doi: 10.2307/2286348 https://www.jstor.org/stable/2286348, June 1979.
- [21] S. F. Dizaji, S.F. "The effects of oil shocks on government expenditures and government revenues nexus (with an application to Iran's sanctions)," Economic Modelling, 40, pp. 299-313, April 2014.
- [22] C. Dreger, and T. Rahmani," The Impact of Oil Revenues on the Iranian Economy and the Gulf States" Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.480.720&rep=rep1&type=pdf HYPERLINK , May 2014.
- [23] L. Du, H. Yanan and C. Wei, "The relationship between oil price shocks and China's macro-economy: An empirical analysis," Energy Policy, 38(8), Pp. 4142-4151, August 2010.
- [24] N. Edirisinghe and S. Sivarajasingham, "Testing the inter-temporal relationship between government spending and revenue: Evidence from Sri Lanka," Global Journals Inc. (USA). 15(7): Pp.1-12, December 2015.
- [25] E. Eltejaei, "Oil, government's budget and economic growth in Iran.', International Journal of Economic Policy in Emerging Economies, 8(3), Pp. 213-228, January 2015.
- [26] K. Emami and M. Adibpour, "Oil income shocks and economic growth in Iran," Economic Modelling. 29(5): pp.1774-1779, September 2012.
- [27] M. A. Eze, "A Comparative Analysis of Declining Oil Revenue Implications on Mono-Economy Budgetary Objectives," Abertay University. 1(2019) Pp 1-659. Available from: Eze_A_ComparativeAnalysis_PhD_2019_Redacted.pdf October 2019.
- [28] M. A. Eze, "A Comparative Survey Data Analysis of Declining Oil Revenue Implications on the Economic Performance of Oil-Exporting Countries: Nigeria, Venezuela and Norway," Journal of Resources Development and Management. Vol. 76 (2021) Pp 22-52, June 2021b.
- [29] M. A. Eze, "The Ordeal of a Petrostate Amidst Declining Oil Revenue and Implications on Budgetary Objectives: An ARDL Bound Test Approach for Angola," Journal of Economics and Sustainable Development. Vol. 12, No. 10. Pp 29-58, December 2021c.

- [30] M. A. Eze, and R. Kouhy, "Episodes of Fluctuating Oil Prices Through the New-Normal Era: The Historical Perspective (1946-2020). Historical Research Letter. 53(2021) Pp 16-39, April 2021.
- [31] M. A. Eze, A. Hassan, and R. Kouhy, "An Analysis of Declining Oil Revenue Implications on Oil-Exporting Countries: An ARDL Bound Test Approach for Nigeria and Venezuela," European Economic Letters. Vol. 13, No. 5. Pp 1351-1362. https://doi.org/10.52783/eel.v13i5.916, December 2023.
- [32] M. Fahey, "Oil Prices and Budgets: The OPEC Countries Most at Risk," Available at: http://www.cnbc.com/2015/12/03/oil-prices-and-budgetsthe-opec-countries-most-at-risk.html December 2015.
- [33] M. R. Farzanegan, "Oil revenue shocks and government spending behavior in Iran," Energy Economics, 33(6), Pp. 1055. doi: 10.1016/j.eneco.2011.05.005, November 2011.
- [34] M. R. Farzanegan and G. Markwardt, "The effects of oil price shocks on the Iranian economy," Energy Economics, 31(1), Pp. 134-151. doi: 10.1016/j.eneco.2008.09.003, September 2009.
- [35] Foo, N. (2015). Falling Oil Prices: The Impact on thd Economy of the Asian-Pacific Region. Available at: file:///C:/Users/1404750/Downloads/154foo%20(2).pdf, December 2015.
- [36] M. Friedman, "The Limitations of Tax Limitation," Policy Review: Pp.7-14, June 1978.
- [37] T. Fueki et al., "Identifying oil price shocks and their consequences: the role of expectations in the crude oil market," Available from: https://www.bis.org/publ/work725.pdf, May 2018.
- [38] O. Y. Halid, "The Cobb-Douglas Production of the Nigerian Economy (1974-2009)," International Journal of Statistics and Applications, 5(2), Pp. 77-80, March 2015.
- [39] J. D. Hamilton, "Oil and the Macroeconomy since World War II," Journal of Political Economy, 91(2), pp. 228-248. doi: 10.1086/261140, February 1983.
- [40] J. D. Hamilton, "Oil and the Macroeconomy: The New Palgrave Dictionary of Economics," Palgrave Macmillan, London, <u>JDH palgrave oil.pdf</u>, August 2005.
- [41] J. D. Hamilton, "Understanding Crude Oil Prices," The Energy Journal, 30(2), Pp. 179-206. doi: 10.5547/ISSN0195-6574-EJ-Vol30-No2-9, December 2008.
- [42] J. D. Hamilton, "Causes and Consequences of the Oil Shock of 2007-08, Brookings Papers on Economic Activities, 40(1) Pp. 215-283. DOI: 10.1353/eca.0.0047, May 2009b.
- [43] J. D. Hamilton, "Historical Oil Shocks," Available at: history.pdf, February 2011.
- [44] J. L. Hass et al. (2017). Oil and Gas Statistics: The Norwegian Experience. Available at: https://www.ssb.no/energi-og-industri/artikler-og-publikasjoner/ attachment/311820? ts=15c88155370, June 2017.
- [45] F. T. Hesary, N. Yoshino, G. Abdoli and A. Farzinvash, "An Estimation of the Impact of Oil Shocks on Crude Oil Exporting Economies and Their Trade Partners," Frontiers of Economics in China. 8(4): Pp.571-591, January 2013.
- [46] S. Holden, "Avoiding the Resource Curse: The Case of Norway," Energy Policy, 1(63), Pp. 870-876. doi: DOI: 10.1016/j.enpol.2013.09.010, December 2013.
- [47] A. M. Husain, et al., "Global implications of lower oil prices," International Monetary Fund (IMF). Available at: https://www.imf.org/external/pubs/ft/sdn/2015/sdn1515.pdf, July 2015.
- [48] I. Alley, A. Asekomeh, H. Mobolaji and Y. A. Adniran, "Oil Price Shocks and Nigerian Economic Growth," European Scientific Journal, 10(19), Pp 375-391, July 2014.
- [49] G. Idrisov, M. Kazakova and A. Polbin, "Theoretical Interpretation of the Oil Prices Impact on Economic Growth in Contemporary Russia," Russian Journal of Economics. 3(1): Pp.257-272, September 2015.
- [50] C. M. Jarque and A. K. Bera, "A Test for Normality of Observations and Regression Residuals," DOI: 10.2307/1403192', International Statistical Review, 55(2), Pp. 163-172, August 1987.
- [51] M. Kabir, "Vector Auto regressive model and the Nigerian Economy," Journal of Economics and Sustainable Development, 5(14), Pp. 129-137, (Online) 2014.
- [52] A. A. Kadafa, "Oil Exploration and Spillage in the Niger Delta of Nigeria," Civil and Environmental Research, 2(3), Pp.38-51, March 2012.
- [53] F. Kaplan, "Oil Price, Exchange Rate and Economic Growth in Russia: A Multiple Structural Break Approach," Advances in Management and Applied Economics. 5(4): Pp.91, August 2015.
- [54] Y. Keho, "Budget balance through revenue or spending adjustments? An econometric analysis of the Ivorian budgetary process, 1960 2005," Journal of Economics and International Finance, 2(1), Pp. 1-11, January 2010.

- [55] L. Kilian, "Oil price volatility: Origins and effect," World Trade Organization (WTO), Economic Research and Statistics Division, Geneza, January 2010.
- [56] A. Kitous, et al., (2016). Impact of Low Oil Prices on Oil Exporting Countries, Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC101562/jrc101562 impact% 20of% 20low% 20oil% 2 Oprices% 2020160512.pdf, May 2016.
- [57] B. Koranyi, "End of oil boom threatens Norway's welfare model" Available at: https://www.reuters.com/article/us-norway-economy-insight/end-of-oil-boom-threatens-norways-welfare-model-idUSBREA4703Z20140508, May 2014.
- [58] A. T. Krakenes, "Norway: Revenue from oil fund now exceeds revenue from oil," Available at: https://eiti.org/news/norway-revenue-from-oil-fund-now-exceeds-revenue-from-oil, May 2015.
- [59] A. A. Kutu and H. Ngalawa, "Monetary Policy Shocks and Industrial Output in Brics Countries.', Journal of Economics and Business, 66(3), Pp. 3-24, July-September 2016.
- [60] R. E. Looney, "Socio-Economic Environments and the Budgetary Allocation Process in Developing Countries: The Case of Defense Expenditures," Socio-Economic Planning Sciences, 1(21), Pp. 71-82, May 1988.
- [61] S. Luković and M. Grbić, "The Causal Relationship Between Government Revenue and Expenditure in Serbia. Economic Themes. 52(2): Pp.127-138 DOI 10.1515/ethemes-2014-0009, January 2014.
- [62] A. C. Marques, J. A. Fuinhas and A. N. Menegaki, "Renewable vs non-renewable electricity and the industrial production nexus: Evidence from and ARDL bounds test approach for Greece," Renewable Energy, Elsevier, Vol.96(PA), Pp. 645-655, October 2016.
- [63] A. H. Ahmad and S. Masan, "Dynamic Relationships Between Oil Revenue, Government Spending and Economic Growth in Oman," International Journal of Business and Economic Development. The Business and Management Review, 3(2), pp. 93-115, July 2015.
- [64] T. N. Matlasedi, "The influence of the real effective exchange rate and relative prices on South Africa's import demand function: An ARDL approach," Cogent Economics and Finance, 2017(5), Pp. 1-16, December 2017.
- [65] F. Monaldi, "The Impact of the Decline in Oil Prices on the Economics, Politics and Oil Industry of Venezuela," Center on Global Energy Policy. Columbia University in the City of New York. Available from: https://energypolicy.columbia.edu/sites/default/files/Impact%20of%20the%20Decline%20in%20Oil%20Prices%20on%20Venezuela September%202015.pdf, September 2015.
- [66] K. A. Mork, "Oil and Macroeconomy When Prices Go Up and Down: An Extension of Hamilton's Results," Journal of Political Economy, 97(3), Pp. 740-744. doi: 10.1086/261625, June 1989.
- [67] Z. Muhammad, et al., "Exploring oil price—exchange rate nexus for Nigeria," OPEC Energy Review. 36(4): Pp.383-395 https://doi.org/10.1111/j.1753-0237.2012.00219.x, December 2012.
- [68] C. H. Mupimpila, L. E. D. Inale, and B. O. M. Offat, "The Causality between Government Revenue and Expenditures in Botswana," International Journal of Economic. 8(1): Pp.1-14, January 2015.
- [69] S. Nanovsky, "The impact of oil prices on trade," Review of International Economics, 27(2019), pp. 431–447. doi: 10.1111/roie.12383, December 2019.
- [70] P. K. Narayan and R. Gupta, "Has oil price predicted stock returns for over a century?" Energy Economics, 48, Pp. 18-23. doi: //dx.doi.org.libproxy.abertay.ac.uk/10.1016/j.eneco.2014.11.018, March 2015.
- [71] P. K. Narayan and S. Narayan, "Government Revenue and Government Expenditure Nexus: Evidence from Developing Countries," Applied Economic Letters, 38(3), Pp. 285-291, August 2006
- [72] P. K. Narayan and R. Smyth, "The Residential Demand for Electricity in Australia: An Application of the Bounds Testing Approach to Cointegration," Energy Policy, 33, Pp. 467-474, March 2005.
- [73] E. Nkoro, and A. K. Uko, "Autoregressive Distributed Lag (ARDL) Cointegration Technique: Application and Interpretation," Journal of Statistical and Econometric Methods, 5(4), Pp. 63-91, December 2016.
- [74] N. P. Nzimande and S. Msomis, "Oil Price Shocks and Economic Activity: The Asymmetric Cointegration Approach in South Africa. Available at: http://saef.ukzn.ac.za/Libraries/Working_Paper/SAEF_Oil_Price_Shocks-NN_SM.sflb.ashx, October 2016.
- [75] OECD/IEA, "Medium Term Oil Market Report," Available at: https://www.iea.org/Textbase/npsum/MTOMR2015sum.pdf , February 2015.
- [76] OIL-PRICE.NET, "Crude Oil and Commodity Prices," Available at: http://www.oil-price.net/, June 2017.
- [77] OIL-PRICE.COM, "Crude Oil Prices," Available at: https://oilprice.com/, July 2024.

- [78] O. Olsen, "Øystein Olsen: Does Norway save too much? Available at: https://www.bis.org/review/r180327d.pdf, March 2018.
- [79] A. Omolade, H. Ngalawa and A. Kutu, "Crude Oil Price Shocks and Macroeconomic Performance in Africa's Oil-Producing Countries," Cogent Economics and Finance. 7(1), Pp. 1-17, https://doi.org/10.1080/23322039.2019.1607431, April 2019.
- [80] OPEC Annual Statistical Bulletin, "OPEC share of world crude oil reserves, 2017," Available at: https://www.opec.org/opec_web/en/data_graphs/330.htm, 2018.
- [81] Organization of the Petroleum Exporting Countries, (OPEC) (2016). OPEC Member Countries: Facts and Figures. Available at: http://www.opec.org/opec_web/en/about_us/25.htm, 2016.
- [82] D. E. Oriakhi and O. D. Iyoha, "Oil Price Volatility and its Consequences on the Growth of the Nigerian Economy: An Examination (1970-2010)," Asian Economic and Financial Review. 3(5): Pp.683-702, May 2013.
- [83] J. E. Payne, "The tax-spend debate: Time series evidence from state budgets," Kluwer Academic Publishers. 95(3/4): Pp.307-320, June 1998.
- [84] M. H. Pesaran, Y. Shin and R. J. Smith, "Bounds testing approaches to the analysis of level relationships.', Journal of Applied Econometrics, 16(2001), Pp. 289-326, June 2001.
- [85] A. W. Phillips, "The Relation between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1861-1957," Economica, 25(100), Pp. 283-299. doi: 10.2307/2550759 https://www.jstor.org/stable/2550759., November 1958.
- [86] A. Rafaqet and S. Mahmood, "The Causal Relationship between Government Expenditure and Revenue in Pakistan," Interdisciplinary Journal of Contemporary Research in Business. 3(12): Pp.29-37, January 2012
- [87] A. Rascouet, "Bloomberg: Oil States Need Price Jump to Balance Budget OPEC Reality Check," Available at: http://www.bloomberg.com/news/articles/2015-11-30/oil-states-need-price-jump-to-balance-budget-opec-reality-check, November 2015.
- [88] C. Recknagel, "What can Norway teach other oil-rich countries?" Available at: https://www.rferl.org/a/what-can-norway-teach-other-oil-rich-countries/26713453.html, November 2014.
- [89] A. A. Salisu and I. A. Adediran, "The U.S. Shale Oil Revolution and the Behavior of Commodity Prices," Econometric Research in Finance, 3(2018), Pp. 27-53, September 2018.
- [90] A. Sayne, and A. Hruby, "Nigeria's oil revenue crunch: falling price and increased competition strain the economy and stability. Atlantic Council. Retrieved," Available at: https://www.files.ethz.ch/isn/195769/Nigeria s Oil Revenue Crunch web.pdf., January 2016
- [91] A. Schipani, "Facing up to cheap oil: A tale of Latin America's two OPEC Members," Available at: http://blogs.ft.com/beyond-brics/author/andresschipani/, March 2015.
- [92] P. Segal and A. Sen, "Oil Revenues and Economic Development: The case of Rajasthan, India. Oxford Institute for Energy Studies," Available at: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2011/08/WPM-43.pdf, August 2011.
- [93] D. J. Slutsky, "The Effective Use of Graphs," Journal of Wrist Surgery, 3(2), Pp. 67-68, May 2014.
- [94] A. Spriestersbeh, A. et al., "Descriptive Statistics," Deutsches Arzteblatt Internationa. 106(36): Pp.578-583, September 2009.
- [95] P. P. Stevens, "Declining Oil Revenues in the GCC States: A Threat or an Opportunity?" Whitehall Papers, 51(1), Pp. 118-133. doi: 10.1080/02681300009414861, January 2009.
- [96] J. E. Stiglitz, "Some Lessons from the East Asian Miracle," The World Bank Research Observer. 11(2): pp.151-177, August 1996.
- [97] M. Stocker, J. Baffes and D. Vorisek, "What triggered the oil price plunge of 2014-2016 and why it failed to deliver an economic impetus in eight charts," Available at: http://blogs.worldbank.org/developmenttalk/what-triggered-oil-price-plunge-2014-2016-and-why-it-failed-delive-r-economic-impetus-eight-charts, January 2018.
- [98] F. Taghizadeh-Hesary and N. Yoshino, "Macroeconomic Effects of Oil Price Fluctuations on Emerging and Developed Economies in a Model Incorporating Monetary Variables," Available at: https://www.econstor.eu/bitstream/10419/145394/1/838107419.pdf, October 2015.
- [99] J. Tatom, "The macroeconomic effects of the recent fall in oil," Federal Reserve Bank of St. Louis Review, (Jun), Pp. 34-45, June/July 1987.

- [100] D. T. Thao and Z. J. Hua, "ARDL Bounds Testing Approach to Cointegration: Relationship," DOI:10.5539/ijef. v8n8p84. Available
 - $from: \underline{https://www.semanticscholar.org/paper/ARDL-Bounds-Testing-Approach-to-Cointegration\%3A-and-Thao-H\\ \underline{ua/64c8b2c7bd558bf9f61c89dc00636fef7d073263}, July 2016.$
- [101] S. Tong, "How oil rich Venezuela ended up with a miserable economy," Available at: http://www.marketplace.org/2016/04/01/world/resource-curse/how-plummeting-global-oil-prices-have-devastate-d-venezuela, April 2016.
- [102] D. Workman, "Crude Oil Exports by Country," Available at: https://www.worldstopexports.com/worlds-top-oil-exports-country/?utm_content=cmp-true, June 2023.
- [103] World Bank, "The great plunge in oil prices: causes, consequences, and policy responses". Available from: https://www.eia.gov/finance/markets/reports presentations/2016AyhanKose.pdf, June 2015.
- [104] M. Yakubu, U. Umar and Z. A. Bello, "Relationship between money supply and government revenues in Nigeria," CBN Journal of Applied Statistics, 5(2), Pp. 117-136, December 2014.
- [105] R. Yanar, "Effects of oil price plunge on the MENA economies," Available at: http://www.orsam.org.tr/files/Raporlar/rapor194/194eng.pdf(Accessed: December 2014.
- [106] N. Yoshino, and F. Taghizadeh-Hesary "Economic impacts of oil price fluctuations in developed and emerging economies," IEEJ Energy Journal, 9(3), Pp. 58-75, October 2014.