Environmental Management in India's Upstream Oil and Gas Sector: A Comprehensive Impact Assessment

Dr. Anju Pandey* Prof. G. N. Sinha**

*Assistant Professor, Law, UPES, Dehradun. email id: a.pandey@ddn.upes.ac.in
**professor of law, UPES, Dehradun. email id: gnsinha@ddn.upes.ac.in

Abstract:

The upstream oil and gas sector in India has seen substantial growth in recent years, raising concerns about its environmental impact. The expansion of oil and gas operations has led to environmental degradation, including air and water pollution, soil contamination, and disruption of local ecosystems. Understanding the extent of these environmental challenges is crucial to assess the damage caused by these activities. While there are existing environmental laws, regulations, and policies for the upstream sector, ensuring compliance remains critical. This study aims to identify gaps or areas of non-compliance in environmental management. Additionally, the adoption and effectiveness of various mitigation measures and technologies will be explored to reduce the environmental footprint of these operations. As India seeks to balance economic growth with environmental sustainability, this research will examine the long-term impact of environmental management practices and their contribution to a sustainable future.

Keywords: Upstream Oil and Gas, Environmental Impact, Mitigation Measures, Sustainability

1. Introduction:

India's upstream oil and gas sector plays a pivotal role in the nation's energy security and economic development. However, the sector's rapid growth has raised significant concerns regarding its environmental impact. Exploration and extraction activities in this sector have the potential to cause severe environmental degradation, including air and water pollution, soil contamination, and biodiversity loss. As India seeks to address its growing energy needs while managing environmental challenges, there is a pressing need to implement effective environmental management practices that balance resource extraction with ecological preservation.

The environmental implications of oil and gas exploration are multifaceted, encompassing impacts on air quality, water bodies, soil health, and surrounding ecosystems. The drilling process, in particular, generates large volumes of waste, such as drill cuttings, drilling fluids, and chemical residues, which are often stored in surface pits or tanks before disposal. Improper disposal of these byproducts can lead to long-term contamination of the environment. Therefore, robust environmental regulations are crucial to ensure that waste is managed appropriately, and that wells are properly decommissioned once they reach the end of their operational life.

This analysis aims to evaluate the regulatory frameworks governing India's upstream oil and gas sector, focusing on the industry's approach to addressing environmental concerns. The study will also examine the sector's adherence to environmental laws and regulations, comparing these practices with international standards to identify potential areas for improvement.

Beyond regulatory compliance, the study emphasizes that effective environmental management practices can act as a catalyst for sustainable development in the sector. With growing global awareness of climate change and the shift towards cleaner energy sources, India's upstream oil and gas sector is at a critical juncture. This research seeks to provide insights into how the sector can enhance its environmental practices, contributing to both energy security and sustainable development.

Through a comprehensive review, the study aims to offer recommendations that could guide the sector towards more responsible and sustainable practices. It is proposed that by advancing environmental management, India's upstream oil and gas industry can play a crucial role in the nation's journey towards sustainable development.

2. Legal and Regulatory Framework Governing India's Upstream Oil and Gas Sector

The Indian government has periodically introduced various licensing frameworks to enhance domestic oil and gas production. Blocks awarded under specific regimes are governed by the regulations of that regime, even if amendments

are made to the regime afterward. Currently, the Government of India has entered into 310 production-sharing contracts for 29 discovered fields, 28 pre-NELP exploration blocks, and 254 NELP regime blocks¹.

Legal and Regulatory Structure

India operates under a federal constitution, where legislative powers are shared between central and state legislatures. According to Article 246 of the Indian Constitution, the Union Parliament holds authority over regulating and developing oil fields, mineral oil resources, petroleum, and petroleum products. Meanwhile, state governments have jurisdiction over issues such as land use, labour, water, and local governance. Therefore, while exploration and production contracts for hydrocarbons are negotiated by the Indian government, state governments issue licenses and approvals for onshore activities. For offshore blocks, licensing authority lies with the Indian government.

A. Key Domestic Legislation Governing Oil and Gas Operations

Several key pieces of legislation regulate India's upstream oil and gas sector:

- 1. Oilfields (Regulation and Development) Act, 1948 (Oilfields Act): This Act governs the processes for licensing the extraction of petroleum, natural gas, crude oil, refined oil, and other petroleum products in both liquid and solid forms. It grants the Indian government rule-making power for mining leases and mineral oil development, as well as the authority to determine royalty rates.
- 2. **Petroleum and Natural Gas Rules, 1959 (PNG Rules):** The PNG Rules, enacted under the Oilfields Act, regulate mining leases and exploration licenses concerning petroleum and natural gas that belong to the Government of India. These rules aim to ensure the conservation and development of petroleum and natural gas resources. They also prohibit petroleum prospecting or mining without a Petroleum Exploration License (PEL) or Petroleum Mining Lease (PML), both granted under the PNG Rules².
- 3. **Mines Act, 1952, and Oil Mines Regulations, 2017:** The Mines Act provides provisions for the health, safety, and welfare of workers in the mining industry, including oil mines. It outlines the responsibilities of mine owners regarding operations and management, along with health and safety protocols. The Oil Mines Regulations set safety criteria for upstream oil and gas facilities, focusing on safety protocols and mandatory training. These regulations stipulate that all oil and gas production installations must have a flare line with specific requirements, such as the height of the flare stack and the installation of remote ignition systems.
- 4. **Petroleum and Natural Gas (Safety in Offshore Operations) Rules, 2008 (PNG Safety Rules):** Established in 2008, these regulations address safety concerns in offshore oil and gas exploration, extraction, and management. They cover aspects such as preparation of records, consent requirements, safety measures, environmental protection, health protocols, and penalties for non-compliance³.

In addition to these legislative provisions, the Indian government periodically releases policies, standards, directives, and guidelines to govern various facets of the upstream oil and gas sector, ensuring that operations align with national priorities and environmental responsibilities.

B. Regulatory Authorities

Several key regulatory and administrative bodies oversee the upstream oil and gas sector in India:

1. **Ministry of Petroleum and Natural Gas (MoPNG):** The MoPNG is the central authority responsible for overseeing the exploration and production of oil and natural gas, as well as the refining, distribution, and marketing of petroleum products. The Ministry also manages the import, export, and conservation of petroleum resources. Acknowledging the critical role of oil and gas in India's economy, the MoPNG has implemented various initiatives to boost domestic production and optimize petroleum resources, with a focus on priorities such as energy efficiency, sustainability, access, and security.

C. Regulatory Bodies and Legislation

Several key regulatory bodies oversee the upstream oil and gas sector in India, each playing a vital role in ensuring the industry's compliance with safety, environmental, and operational standards:

1. **Directorate General of Hydrocarbons (DGH):** Established in 1993 under the Ministry of Petroleum & Natural Gas, the DGH manages India's oil and natural gas resources with an emphasis on environmental, safety, technological, and economic considerations. The DGH is responsible for implementing the New Exploration Licensing Policy (NELP), overseeing Production Sharing Contracts (PSCs), encouraging investment in exploration and production, and exploring alternative hydrocarbon resources such as Coal Bed Methane, Gas Hydrates, and Oil Shales.

¹ Ministry of Petroleum and Natural Gas (MoPNG), Government of India. (2023). Annual Report 2022-2023.

² Government of India. (1959). *Petroleum and Natural Gas Rules*, 1959.

³ Government of India. (2008). Petroleum and Natural Gas (Safety in Offshore Operations) Rules, 2008

- 2. **Oil Industry Safety Directorate (OISD):** Operating within the Ministry of Petroleum and Natural Gas, the OISD is a technical directorate focused on developing and enforcing self-regulatory safety measures to improve safety standards across the oil and gas industry in India.
- 3. **Directorate General of Mines Safety (DGMS):** The DGMS, under the Ministry of Labour and Employment, is responsible for overseeing the safety, health, and welfare of workers in mines, including oil and gas facilities. The agency ensures compliance with health and safety regulations to protect workers in hazardous environments.

Apart from these bodies, various laws and regulations address environmental protection, labour rights, and other aspects relevant to the oil and gas sector in India. Some key regulations include:

- 1. **Environmental Impact Assessment (EIA):** EIA is a process used to predict the potential environmental impacts of a proposed project. It helps decision-makers compare alternatives to identify the most balanced approach in terms of economic and environmental outcomes. The process systematically evaluates both positive and negative impacts and suggests mitigation measures. India's EIA process, which began in the 1970s with a focus on river valley projects, was formalized in 1994 under the Ministry of Environment and Forests (MEF). Since then, there have been several amendments to the EIA notification, expanding its scope to include various types of projects, with specific requirements for coastal activities and international funding⁴.
- 2. Water (Prevention and Control of Pollution) Act, 1974 (WPCP): This Act applies to several Indian states and aims to prevent water pollution and maintain water quality. It prohibits the release of pollutants into water bodies beyond specified limits and establishes penalties for violations. The Act is relevant to the oil and gas sector as it addresses potential impacts on water resources, requiring compliance with regulations designed to prevent contamination of water sources⁵.
- 3. **Air (Prevention and Control of Pollution) Act, 1981 (APCP):** The APCP Act sets standards for air quality and establishes mechanisms for controlling air pollution. It regulates the use of polluting fuels and substances and requires industries to obtain consent from state pollution control boards to operate in pollution-sensitive areas. The CPCB enforces national air quality standards, and the Act empowers pollution control boards to take emergency action in cases of non-compliance⁶.
- 4. **The Forest (Conservation) Act, 1980:** This Act aims to protect and conserve forests by regulating diversion of forest land for non-forestry purposes. It limits state authorities' power to de-reserve forests or divert forest land for activities such as agriculture or urban development. It required prior approval of government of India for diversion of forest land for non-forestry purposes.
- 5. **Wildlife Protection Act, 1972:** While this Act primarily focuses on the conservation of wildlife, it also applies to activities in the oil and gas sector that could affect wildlife habitats. Compliance with this Act is essential to ensure that oil and gas exploration and production activities do not harm wildlife or ecosystems.
- 6. **The Public Liability Insurance Act, 1991:** This Act requires industries handling hazardous substances to secure insurance coverage for liabilities arising from accidents, including loss of life, injury, or property damage. Although it is not specific to the oil and gas sector, companies involved in the storage and transportation of hazardous materials must comply with this requirement to manage potential public liabilities.
- 7. **National Green Tribunal (NGT) Act, 2010:** The NGT was established to ensure efficient resolution of environmental cases, including those related to the conservation of forests, wildlife, and natural resources. It provides a platform for individuals and communities to seek relief and compensation for environmental damage and enforces legal rights related to environmental protection.
- 8. **Biological Diversity Act, 2002:** This Act focuses on conserving biological diversity, ensuring sustainable use of resources, and preventing biopiracy. It mandates benefit-sharing from biological resources and their derivatives, promoting equitable distribution of benefits among local communities and stakeholders.
- 9. **Environmental (Protection) Act, 1986:** The Environmental Protection Act provides a comprehensive framework for environmental management in India. It empowers the central government to regulate industries, set emission standards, and manage hazardous waste. The Act mandates Environmental Impact Assessments (EIAs) for specific projects and includes provisions for controlling pollution in sensitive areas, such as coastal zones and ecologically fragile regions.

⁴ Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India. (2006). *Environmental Impact Assessment Notification*, 2006

⁵ Government of India. (1974). *Water (Prevention and Control of Pollution) Act, 1974*. Ministry of Environment, Forest and Climate Change, Government of India

⁶ Government of India. (1981). *Air (Prevention and Control of Pollution) Act, 1981*. Ministry of Environment, Forest and Climate Change, Government of India. Retrieved from http://legislative.gov.in/sites/default/files/A1981-14.pdf.

These regulations collectively govern the operations and environmental responsibilities of the oil and gas industry in India, ensuring that industry practices comply with safety, environmental, and social standards.

3. Environmental Management Practices

The upstream oil and gas industry faces a range of environmental challenges, including liquid, gaseous, and solid pollution. Addressing these challenges effectively requires proactive planning, appropriate budget allocation, and a commitment to minimizing environmental impacts. Air quality management begins with baseline assessments and dispersion modelling during facility design, ensuring that emission limits are met and accounted for in equipment selection. The practice of flaring and venting natural gas, which contributes to emissions and can negatively impact local communities, must adhere to international standards for reduction.

Produced water management is an essential aspect, with disposal options such as injection into reservoirs or dedicated wells carefully evaluated. The industry also emphasizes waste segregation, recycling, and proper disposal planning to address both hazardous and non-hazardous wastes. When handling drilling fluids and cuttings, various treatment and disposal methods are employed, ensuring compliance with environmental regulations. Noise management and decommissioning are considered, with a focus on restoring landforms and successfully implementing revegetation efforts. The entire environmental management process reflects the industry's commitment to sustainable practices and environmental stewardship. In India, exploration and production (E&P) projects must comply with national and state regulations, including obtaining clearances such as Environmental Clearance (EC), Forest Clearance (FC), Consent to Operate (CO), Consent to Establish (CE), and Hazardous Waste Authorization. These processes involve thorough scrutiny, public consultation, and necessary approvals.

The oil and gas sector also pays water cess on a quarterly basis, submits compliance reports, and adheres to the conditions stipulated by regulatory authorities. The exploitation of oil reserves inevitably raises environmental concerns, highlighting the importance of effectively implementing statutory provisions. Understanding the relationship between oil field exploration, development, and environmental management is vital to ensuring that these activities align with sustainability goals⁷.

4. Industry Compliance with Environmental Legislation and Regulations

Compliance with environmental regulations in India's upstream oil and gas sector is a complex and evolving process shaped by several factors, including regulatory oversight, corporate responsibility, technological advancements, public and community pressures, adherence to international standards, and government policies. The industry's compliance level is influenced by the effectiveness of environmental impact assessments, air and water pollution control measures, and overall commitment to sustainable, eco-friendly practices. Ongoing monitoring, periodic audits, and transparent reporting are vital for maintaining and enhancing compliance standards across the sector.

Prominent Indian companies in the upstream oil and gas sector, such as Oil and Natural Gas Corporation Limited (ONGC), Oil India Limited (OIL), Reliance Industries Limited (RIL), GAIL (India) Limited, Indian Oil Corporation Limited (IOCL), and Hindustan Petroleum Corporation Limited (HPCL), are increasingly prioritizing environmental management and sustainability.

ONGC (Oil and Natural Gas Corporation Limited) focuses heavily on environmental responsibility in its Exploration and Production operations. The company integrates sustainability into its operations through investments in advanced technology, waste management, and biodiversity conservation. ONGC has made significant strides in reducing natural gas flaring, controlling noise pollution, treating produced water, and adopting green practices. It also actively participates in biodiversity conservation projects. The company's commitment to environmental protection is evident in its sustainable development policies, which emphasize proactive strategies, technology adoption, and community engagement. ONGC's achievements in environmental performance have earned it recognition through various awards⁸.

Oil India Limited (OIL) emphasizes environmental responsibility, particularly in energy, emissions, water, and waste management. The company has committed to reducing greenhouse gas emissions and addressing climate change through responsible energy usage and waste management practices. OIL incorporates renewable energy solutions, partners in carbon reduction projects, and closely monitors air and water quality, ensuring efficient resource use and sustainable waste management⁹.

⁷ ONGC. (2020). Sustainability Report 2020. Oil and Natural Gas Corporation

⁸ ONGC, https://ongcindia.com/web/eng/sustainability/environment/environment-management, (last visited on December 27th, 2023)

⁹ OIL, https://www.oil-india.com/Document/OIL_Sustainability_Report2021-22.pdf, (last visited on November 26th, 2023)

Reliance Industries Limited (RIL) integrates environmental sustainability into its Health, Safety, and Environment (HSE) vision, focusing on energy efficiency, waste reduction, and regulatory compliance. RIL follows a holistic approach that includes clean energy practices, biodiversity conservation, and digitization. The company tracks and manages its greenhouse gas emissions, invests in retrofit technologies, and ensures compliance through environmental audits and approvals. By embracing circular economy principles, RIL reduces, reuses, and recycles, particularly in hazardous waste management. Acknowledging the global shift towards a low-carbon economy, RIL aligns its strategies with investor expectations, strengthening internal governance, and investing in R&D for carbon reduction¹⁰.

Indian Oil Corporation Limited (Indian Oil) places a strong emphasis on Health, Safety, and Environment (HSE) as foundational principles for sustainable development. The company actively engages in pollution control, resource conservation, and renewable energy initiatives, demonstrating a deep commitment to environmental responsibility. Indian Oil prioritizes creating safe workplaces, promoting resource efficiency, and contributing to the well-being of its employees, customers, and communities.

In conclusion, while these companies exhibit a strong commitment to environmental sustainability and responsibility, a thorough evaluation is necessary to determine the true extent of their compliance with environmental regulations. Assessing factors such as regulatory adherence, transparency in reporting, and the tangible environmental impacts of their initiatives will provide a clearer understanding of their efforts. Ongoing monitoring, innovation, and community involvement will be key in ensuring that these companies continue to meet their environmental commitments and make meaningful contributions to global sustainability goals.

4. International Environmental Management Practices

A. Strategic Environmental Assessment (SEA)

SEA is a process that evaluates the environmental impacts of proposed policies, plans, or programs at an early stage, ensuring these impacts are considered alongside economic and social factors. It helps identify cumulative environmental effects from various development scenarios. While SEAs are valuable for large-scale planning, they are not always legally mandated in the oil and gas sector but are often utilized for major policy decisions. A notable example is Uganda's Albertine Graben oil discovery, where an SEA conducted in 2013 helped assess the environmental and social impacts of oil and gas activities, influencing sustainable management practices for the industry¹¹.

B. B. Environmental, Social, and Health Impact Assessments (ESHIA)

ESHIA evaluates the potential impacts of development projects, identifying risks and mitigation measures. It is commonly used in the oil and gas industry for facility construction, decommissioning, and reclamation activities. ESHIA is often required by host governments and is critical in ensuring compliance with environmental, social, and health regulations. It also provides input into SEAs, creating a comprehensive approach to managing environmental risks.

C. C. Environmental Management Systems (EMS) and Operating Management Systems (OMS)

EMS is a company-wide framework for managing environmental performance, ensuring compliance with regulations, and reducing environmental impacts. In the oil and gas sector, EMS works alongside OMS, which covers broader operational aspects like health, safety, and security. OMS helps integrate risk management practices, including environmental, social, and health concerns, with a focus on continuous improvement and adherence to legal and corporate standards.

D. Environmental, Social, and Health Management Plans (ESHMP)
An ESHMP is part of the OMS, detailing mitigation measures, compliance strategies, and performance optimization efforts. It integrates environmental management with other operational aspects and ensures commitments from ESHIA are effectively tracked and implemented. The ESHMP outlines the roles, responsibilities, and actions for managing environmental and social impacts, including waste management and community engagement, from the planning stage through to project completion.

E. E. Emergency Preparedness and Response

Oil and gas companies must prepare for incidents like oil spills or natural disasters. Emergency plans should be

https://www.ril.com/Sustainability/HealthSafety.aspx#:~:text=We%20comply%20with%20all%20applicable,facility%20design%20and%20operating%20procedures., (last visited on November 26th, 2023)

¹⁰ Reliance Industries Limited,

¹¹ Saddler, B., & Verheem, R. (1996). Environmental management in the 1990s: A social and political perspective

integrated into the OMS and designed to minimize environmental impacts, ensure safety, and enable rapid response. Drawing from past incidents like the Deepwater Horizon spill, emergency plans are regularly updated, with ongoing training and exercises to maintain preparedness. Monitoring and reporting on incidents help refine response strategies and ensure regulatory compliance.

F. F. EU Offshore Safety Regulations

In the European Union, offshore oil and gas operations are regulated under the Directive on Safety of Offshore Oil and Gas Operations. This directive mandates risk assessments, safety measures, and financial liability for environmental damage. It was introduced following incidents like the Deepwater Horizon spill and emphasizes strict safety protocols. Companies are required to adopt these regulations, enhancing safety and reducing the risk of major environmental accidents.

5. Comparing International and Indian Environmental Management Practices

India's environmental management practices in the oil and gas sector are aligned with international standards, focusing on comprehensive assessments such as EIA and SEA. However, international practices tend to be more standardized and rigorous in their enforcement, with greater emphasis on global emission reduction, waste management, and adherence to detailed methodologies. While India is making progress, challenges remain in ensuring consistency in enforcement and adapting to the evolving demands of the oil and gas sector. International practices are more robust due to well-established regulatory structures, resources, and expertise, facilitating more effective monitoring, public participation, and transparency.

In conclusion, while India is progressing in aligning its practices with international standards, it faces challenges in enforcement consistency and adapting to the dynamic nature of the oil and gas industry. Addressing these challenges will be essential for creating a more sustainable and effective environmental management framework.

6. Sustainable Practices for Indian Upstream Oil and Gas Sector

To improve sustainability and energy efficiency in the upstream oil and gas sector, India is focusing on various strategies, including energy-saving initiatives, enhanced oil recovery techniques, and reduction of gas flaring. Key efforts involve adopting advanced technologies, optimizing energy use, and addressing environmental impacts. Notable companies like ONGC, OIL, and GAIL have taken significant steps toward energy conservation and emissions reduction, setting examples for the industry.

1. Energy Efficiency Strategies

Indian oil and gas companies are implementing various initiatives to enhance energy efficiency:

- Adopting Energy Conservation Technologies: Installation of energy-saving systems at different facilities.
- Efficient Lighting Systems: Use of energy-efficient lighting technologies.
- **Bi-Fuel Technology**: Incorporation of bi-fuel systems to reduce energy consumption.
- Conducting Energy Audits: Regular assessments to identify areas of energy wastage and potential savings.

For instance, ONGC focuses on optimizing systems that have resulted in substantial electricity savings, while OIL ensures energy self-sufficiency by pursuing various conservation measures. GAIL has set a target to reduce specific energy consumption by 5% through integrated energy management and renewable energy integration. In addition, regulatory bodies can further promote energy efficiency by offering incentives, mandates, and fostering awareness around best practices.

2. Reducing Gas Flaring

Gas flaring, which involves burning off excess natural gas during oil extraction, is a significant contributor to global CO2 emissions. While flaring regulations exist in India, challenges remain regarding enforcement, infrastructure, and pricing, hindering effective commercialization of associated gas.

International organizations like the World Bank recommend clearer legislation, fiscal incentives, and stronger market frameworks to reduce flaring. In India, ONGC and companies in regions like West Bengal have made efforts to reduce flaring through technological solutions, with continued emphasis on achieving more efficient gas utilization. Globally, initiatives such as the Global Gas Flaring Reduction Partnership are driving efforts to curb these emissions¹².

3. Greenhouse Gas Reduction and Transition to Renewable Energy

To ensure long-term sustainability, India's upstream oil and gas sector must reduce greenhouse gas emissions and accelerate the adoption of renewable energy sources. In the short term, this includes mandatory disclosures of energy

¹² IPIECA, Environmental management in the upstream oil and gas industry, Report 254, 46 (2020), https://www.ipieca.org/resources/environmental-management-in-the-upstream-oil-and-gas-industry

usage and carbon emissions, incentivizing energy-saving initiatives in exploration and production, and offering tax incentives to reduce flaring.

Looking toward the medium term, it is recommended that the government enforce reductions in associated gas flaring in line with global standards and encourage investments in renewable energy through Clean Development Mechanism (CDM) projects. These projects could aim to generate renewable energy equal to or greater than the energy consumed in hydrocarbon extraction and processing¹³.

In the long term, a comprehensive infrastructure plan is needed to commercialize associated natural gas, which is currently flared due to a lack of utilization infrastructure.

4. Policy Framework for Sustainability

To support a greener and more sustainable future for India's upstream oil and gas sector, a well-defined public policy framework should be established. This framework should draw from both domestic achievements and international best practices, fostering an environment where sustainability initiatives are promoted, incentivized, and made feasible across the sector. By doing so, India can improve its energy efficiency, reduce environmental impacts, and move toward a low-carbon economy while recognizing the essential role of oil and gas in the country's economic landscape.

In conclusion, while the Indian upstream oil and gas industry has made significant strides in integrating sustainability practices, there are ample opportunities for further enhancement. By strengthening policy, investing in renewable energy, and reducing emissions, the sector can contribute to a more sustainable energy future.

4.1 Enhancing Sustainability: Environmental Management Approaches for India's Upstream Oil and Gas Sector Integrating Strategic Environmental Assessment (SEA) into development plans, including poverty reduction strategies, significantly improves the effectiveness of these initiatives. For example, Tanzania's second poverty reduction strategy included SEA, which helped incorporate environmental, social, and economic factors into sector policies and national budgets. SEA is a vital tool for integrating sustainability into decision-making, offering confidence to policymakers while helping avoid unforeseen negative outcomes. It identifies opportunities for positive impacts and highlights the consequences of policy decisions, as evidenced by Ghana's National Strategy for Growth and Poverty Reduction and Pakistan's Thermal Power Generation Policy. SEA acts as a safeguard against costly errors in policymaking, helping prevent unexpected costs or the need for reparation. Furthermore, SEA encourages improved governance by involving the public in decision-making processes. A case in South Africa, for instance, demonstrates how public engagement in water use studies can resolve complex resource allocation challenges. SEA also promotes international cooperation by addressing shared environmental concerns, contributing to the achievement of MDG 7, which focuses on ensuring environmental sustainability. In essence, SEA plays a pivotal role in fostering sustainable development by minimizing negative environmental impacts and enhancing resource opportunities.

Environmental Impact Assessment (EIA) is a fundamental process in ensuring that major projects, especially in the oil and gas sector, do not compromise essential natural resources such as water, land, and biodiversity. Projects often led to deforestation, land degradation, and air and water pollution, making it critical to strike a balance between environmental protection and development. EIA has three key functions: predicting potential issues, suggesting strategies to avoid harm, and enhancing positive outcomes. For the past 25 years, organizations like the International Institute for Environment and Development (IIED) have advocated for sustainable development, seeking to ensure that future generations enjoy a quality of life equal to or better than the present. Sustainable development requires trade-offs, often between economic growth and environmental conservation. EIA, through public consultation and stakeholder engagement, offers a structured approach to decision-making by identifying conflicts, predicting constraints, and recommending mitigation measures to optimize environmental outcomes. India's comprehensive EIA framework ensures the oil and gas sector adheres to environmental protection standards while fostering informed decision-making regarding potential environmental impacts. Environmental, Social, and Governance (ESG) practices are gaining traction in the oil and gas industry, driven by the growing demand to address climate change and reduce methane emissions. Major industry players like ExxonMobil, Total, and Shell are increasingly focusing on ESG goals, aligning with investor expectations and government regulations. The failure to adopt ESG principles can lead to reputational damage and reduced access to capital. Adopting ESG-focused engineering solutions, which emphasize cleaner, more cost-effective technologies, can result in substantial benefits such as improved ethical practices, cost savings, and enhanced capital attraction. ESG-friendly strategies not only promote environmental and social responsibility but also contribute to long-term profitability by helping companies navigate ethical dilemmas and support sustainable business practices.

In conclusion, the integration of robust environmental management practices—such as SEA, EIA, and ESG principles—into the development process is crucial for promoting sustainability within the oil and gas sector. These practices help

¹³ Saddler, B., & Verheem, R. (1996). Greenhouse gas reduction and transition to renewable energy

mitigate environmental impacts, foster better governance, and unlock opportunities for sustainable growth. Oil and gas companies that embrace environmental responsibility and cost-effective solutions will benefit from improved profitability and long-term viability.

7. Oil and Gas Companies: Contributors to Sustainability or Barriers?

The urgency of addressing climate change is escalating, driven by more frequent extreme weather events, alarming global reports, and increasing public protests. The world's largest greenhouse gas (GHG) emitters—such as China, Saudi Arabia, India, and Canada—are currently not on track to meet their Paris Agreement commitments, according to the Climate Action Tracker. As pressure mounts for the complete removal of fossil fuels from the energy system, oil and gas companies are facing heightened scrutiny from political and environmental leaders. The industry's challenges are compounded by policies designed to decarbonize, raising concerns among investors about the potential ceiling for future hydrocarbon demand¹⁴.

Despite these challenges, the oil and gas industry still hold a vital role in the global energy landscape, especially with the projected growth in global energy demand. To navigate the transition toward a low-carbon economy, oil and gas companies are diversifying their business models, investing in decarbonization technologies, reassessing geopolitical risks, and adopting climate-focused Environmental, Social, and Governance (ESG) principles. The industry's ability to transition from focusing on "oil and gas" to a broader "energy" approach offers an opportunity to mitigate risks associated with the changing energy landscape¹⁵.

The oil and gas sector faces a strategic dilemma of balancing short-term profits with long-term sustainability. Investments in clean energy technologies currently constitute a very small portion of overall capital expenditure, but the industry has the potential to make substantial strides today in reducing its environmental impact. Relying solely on electricity for the energy transformation is insufficient—oil and gas companies can play a key role in advancing capital-intensive clean energy technologies. While the transition to a cleaner energy sector may proceed without the direct involvement of oil and gas, it would be far more costly and challenging ¹⁶.

In conclusion, while oil and gas companies face significant challenges in the face of climate urgency and pressure for decarbonization, they also have the potential to contribute significantly to the solution. By evolving their business models, supporting clean technologies, and embracing sustainability, these companies can play a pivotal role in the successful energy transition, despite the inherent difficulties.

8. Conclusion

Despite growing global momentum toward sustainable practices, current trajectories indicate that the world is not on track to meet the Sustainable Development Scenario (SDS), which envisions a significant reduction in oil and gas demand by 2040. This gap in emissions reduction, alongside rising public support for low-emission policies, has intensified the call for decisive action. The SDS provides a roadmap for the energy sector's rapid transition, addressing not only emissions but broader imperatives like universal energy access, cleaner air, and energy security.

The SDS envisions a substantial reduction in oil demand by the 2030s, driven by the rise of electric vehicles (EVs) and alternative fuels in sectors like transport, shipping, and aviation. Advanced economies, particularly in Europe and the Asia-Pacific, are leading the way in EV adoption, with projections that over 90% of car sales will be electric by 2040. This shift, along with increased material efficiency and recycling, is expected to decrease oil demand in petrochemicals in developed economies.

For developing economies like India and China, oil demand is projected to grow until around 2025 and 2030, respectively, after which it will start to decline. Sub-Saharan Africa, while seeing increased oil consumption, will achieve universal energy access by 2030, maintaining low per capita oil use.

In terms of natural gas, the SDS emphasizes adapting production to shifting demand and addressing environmental concerns, particularly through significant reductions in methane emissions. This includes measures like electrifying liquefied natural gas (LNG) processes, increasing the use of Carbon Capture, Utilization, and Storage (CCUS), and repurposing gas grids for low-carbon energy distribution.

¹⁴ Climate Action Tracker, Countries | Climate Action Tracker, (last visited on November 24th, 2023)

Saddler, B., & Verheem, R. (1996). Oil and gas companies: Contributors to sustainability or barriers!
 Adedoyin OO, Olalekan RM, Olawale SH, et al: A review of environmental, social and health impact assessment (Eshia) practice in Nigeria: a panacea for sustainable development and decision making, 9 J. MOJ Public Health 81, 83 (2020)

For the oil and gas industry, the first step in the SDS is drastically reducing its environmental impact. This involves curbing methane emissions, eliminating flaring, and enhancing efficiency. The SDS stresses the importance of CO2 pricing and policy interventions to drive change, alongside investments in low-carbon technologies such as hydrogen and biofuels.

To align with the SDS and meet global emissions reduction targets, key actions include accelerating the transition to electric vehicles, enhancing petrochemical efficiency, and repurposing gas grids for low-carbon energy. The oil and gas sector must focus on reducing emissions intensity by over 50% by 2040 and embrace CO2 pricing and policy-driven interventions. Supporting research, developing nature-based solutions, and engaging actively in the electricity sector will also be essential in meeting ambitious emissions reduction goals.

In summary, achieving the SDS requires a concerted effort across the energy sector, including the oil and gas industry. With well-designed policies, industry support, and large-scale deployment of low-carbon technologies, we can pave the way for a sustainable energy future.