"An Empirical Study on Work-Life Balance and Its Implications in the Service Industry"

Rinki Mishra¹, Komal Parmar², Padma Narayan³

¹Assistant Professor, Faculty of Management Studies, Parul University, Vadodara, Gujarat. ^{2,3}MBA Student, Faculty of Management Studies, Parul University, Vadodara, Gujarat.

Abstract:

The research study explores the empirical study indicate that gender does not significantly influence various aspects of work-life balance within the service industry. Specifically, no notable differences were observed between male and female employees regarding stress levels, workplace environment, leave arrangements, or overall satisfaction with career development and work-life balance factors, as supported by p-values greater than 0.05 in most chi-square tests. However, one key exception was identified, where a statistically significant difference emerged in perceptions of salary fairness and competitiveness between genders (p = 0.006), suggesting that male and female employees view salary satisfaction differently. Additionally, correlation analysis revealed moderate positive relationships between certain variables, such as between employees feeling worried about work (W15) and the importance of workplace location in work-life balance (W12), indicating that workplace-related concerns may influence how employees perceive balance between their personal and professional lives. Overall, the study highlights the complexity of work-life balance and the need for organizations to address specific factors like salary fairness while continuing to foster an inclusive and balanced work environment.

Keywords: Work-Life Balance, Service Industry, Employee Well-being, Job Satisfaction, Employee Productivity

1. Introduction

The service industry, also known as the tertiary sector, comprises businesses that provide intangible goods or services to consumers and businesses. It includes various activities such as hospitality, healthcare, finance, education, IT services, transportation, and professional services like consulting and legal assistance. Unlike the manufacturing sector, which produces physical goods, the service industry focuses on delivering experiences, expertise, and support. It is vital to economic growth, contributing significantly to GDP and employment worldwide. With the increasing demand for personalized and convenient services, this sector has seen rapid expansion, driven by technological advancements and digital transformation. However, maintaining consistent quality, managing customer expectations, and adapting to new technologies are ongoing challenges for service providers.

Service industries are those not directly concerned with producing physical goods (such as agriculture and manufacturing). Some service industries, including transportation, wholesale trade and retail trade are part of the supply chain delivering goods produced in the agricultural and manufacturing sectors to final consumers.

Other services are provided directly to consumers. These include health care, education, information services, legal services, financial services, and public administration. The service sector accounts for around 70-80 per cent of employment in modern economies.

The service industry is a major contributor to GDP in most economies, especially in developed countries. Globally, the service sector accounts for approximately 65% of the world's GDP, reflecting its dominance over other sectors like agriculture and manufacturing. In advanced economies such as the United States, the service industry contributes around 80% of GDP, covering areas like finance, healthcare, education, and technology. The sector's share is also growing in emerging markets, making up about 55-60% of GDP in countries like India and Brazil. The rise of digital services, e-commerce, and technology-driven solutions has further accelerated the expansion of the service sector, making it a crucial driver of economic growth and employment.

Research Questions:

- How does work-life balance influence employee job satisfaction in the service industry?
- What is the relationship between work-life balance and employee productivity?
- How does work-life balance affect employee retention in the service industry?

Research Hypotheses:

H1: Work-life balance has a significant positive effect on employee job satisfaction in the service industry.

H2: Work-life balance is positively correlated with employee productivity.

H3: Work-life balance significantly influences employee retention in the service industry.

2. Literature Review:

1986 This groundbreaking study introduced the concept of Perceived Organizational Support (POS), which refers to employees' beliefs about the extent to which their organization values and supports their well-being. The researchers investigated the relationship between POS and employee outcomes, including job satisfaction, organizational commitment, and turnover intentions. Eisenberger, R., Huntington, R., Hutchison, S., & Sowa, D. (1986). Perceived organizational support. Journal of Applied Psychology, 71(3), 500507.1992This study examined the antecedents and outcomes of work-family conflict (WFC), exploring the relationships between work and family demands, WFC, and employee well-being. Organizations should address WFC through flexible work arrangements and support. Employees' family responsibilities should be considered in work demands.WFC can have significant consequences for employee well-being. Frone, M. R., Russell, M., & Cooper, M. L. (1992). Antecedents and outcomes of work-family conflict. Journal of Occupational and Organizational Psychology, 65(2), 135-146.1995 The 1995 study by Aryee and Luk, "Work and family issues in Singapore," explores the intricate relationship between work and family life in Singapore. This research delves into the challenges faced by working individuals in balancing their professional and personal responsibilities, shedding light on the impact of work demands on family life and vice versa. This study has significant implications for organizations and policymakers seeking to promote work-life balance and support employees' family responsibilities. Aryee, Work-family conflict negatively impacts job/family satisfaction and overall well-being Long working hours, workload, and family responsibilities contribute to conflict Women experience higher work-family conflict than men Organizational support and family-friendly policies alleviate conflict S., & Luk, V. (1995). Work and family issues in Singapore. Journal of Industrial Relations, 37(3), 347-365. Thompson et al. (1999) Organizational culture significantly influences work-family conflict. Workfamily benefits alone do not reduce work-family conflict. Cultural values emphasizing work demands and

long hours exacerbate work-family conflict. Cultural values supporting family and flexibility reduce workfamily conflict. Identified organizational culture as a critical factor influencing work-life balance. Organizations should assess and adapt their culture to support work-life balance. Managers should prioritize employee wellbeing and flexibility. Future research explore longitudinal effects of organizational culture on work-family conflict.2001Hofstede, Work-life balance refers to the harmonious integration of professional and personal responsibilities, enabling individuals to manage their work and nonwork life effectively. G. (2001). Culture's consequences. Sage Publications. Guest, D. E. (2002). Worklife balance is a complex, multifaceted concept Organizational support and culture significantly impact work-life balance Individual differences (e.g., personality, coping mechanisms) influence work-life balance Work-life conflict affects employee well-being, job satisfaction, and organizational performance Perspectives on the study of work-life balance. Investigate longitudinal effects of work-life balance Explore work-life balance across diverse cultures and industries Develop effective interventions for promoting work-life balance Social Science Information, 41(2), 255-279.2005 Demerouti, E., & Bakker, A. B. (2005). Burnout spills over from work to home, affecting relationship quality. Crossover effects occur, where one partner's burnout affects the other partner's well-being. Work-home interference mediates the spillover and crossover effects. Relationship quality buffers against burnout transmission. Spillover and crossover of burnout among working couples. Journal of Occupational Health Psychology, 10(2), 137-150. Aryee, S., Srinivas, E. S., & Tan, H. H. (2005). The authors define work-family balance as the ability of an individual to effectively manage work and family roles, ensuring that demands from both domains do not conflict excessively. Achieving balance means that one's work life does not interfere significantly with family responsibilities, and vice versa. A supportive work environment can help employees manage family commitments without compromising work responsibilities. Rhythms of life: Antecedents and outcomes of work-family balance. Journal of Applied Psychology, 90(6), 1070-1084. Greenhaus, J. H., & Allen, T. D. (2005). Greenhaus and Allen explore various definitions of worklife balance, highlighting that it generally refers to the equilibrium between work responsibilities and personal life activities. It involves managing work demands while maintaining sufficient time and energy for family, leisure, and self-care. Balancing multiple roles (e.g., employee, parent, partner) can be challenging, and conflicts can arise when demands from one role interfere with another. Work-life balance: A review of the literature. Journal of Occupational and Organizational Psychology, 78(3), 291-315.Rogelberg, S. G. (2006). Rogelberg defines work-life balance as the degree to which individuals can manage their work and personal life roles without experiencing significant conflict or stress. The paper discusses the evolving nature of worklife balance, suggesting that it is not merely the absence of conflict between work and personal life but also the ability to harmoniously integrate these roles. Understanding, measuring, and managing work-life balance. The study addresses the challenges associated with measuring work-life balance. It highlights that traditional measurement approaches often focus on work-family conflict, which captures negative aspects of the relationship between work and personal life. Rogelberg advocates for more comprehensive measurement tools that include positive dimensions, such as work-family enrichment, where involvement in one domain can positively impact the other. Journal of Applied Psychology, 91(2), 261-273.2015 Harrison, A. W., & Kelly, E. L. (2015). Harrison and Kelly (2015) provide a comprehensive review of the work-life balance (WLB) concept, highlighting its significance in enhancing employee wellbeing, job satisfaction, and overall productivity. The study explores how WLB has evolved from a focus on managing time to a broader approach that includes mental and emotional

well-being. Key factors that impact WLB include flexible work arrangements, workload management, organizational support, and individual coping strategies. The authors discuss various organizational strategies to promote WLB, such as flexible work hours, remote work options, and wellness programs. Additionally, the review addresses how demographic factors, including age, gender, and family status, influence individuals' experiences and perceptions of WLB. Work-life balance: A review of the literature. Journal of Applied Psychology, 100(5), 1244-1256.Lu, L., et al. (2016). The study explores the concept of work-life balance across various cultural contexts, emphasizing that cultural values and societal norms significantly influence how people perceive and manage work and personal life. For instance, individualistic cultures (e.g., the United States) may prioritize personal achievements and self-care, while collectivistic cultures (e.g., China) often emphasize family responsibilities and group harmony. The study examines how cultural norms shape expectations around work-life balance. For example, in cultures with strong gender roles, there may be higher expectations for women to prioritize family responsibilities, whereas men are expected to focus on work. Conversely, in egalitarian societies, there is a stronger emphasis on shared responsibilities between partners. Cross-cultural differences in work-life balance experiences and expectations. Journal of International Business Studies, 47(6), 713-730.2017Agha, K., Azmi, F. T., & Irfan, A. (2017). Agha, Azmi, and Irfan (2017) investigate work-life balance (WLB) among university teachers in Oman, highlighting the unique challenges faced in the educational sector. The study examines how factors such as workload, organizational culture, and job demands affect WLB for educators. Through their research, the authors found that while teachers generally strive to maintain a balance between professional and personal lives, excessive workloads and rigid schedules often disrupt this balance. The study emphasizes the need for educational institutions to adopt flexible work practices, offer support programs, and foster a more accommodating work culture to improve WLB for university teachers. Worklife balance among university teachers in Oman. International Journal of Educational Management, 31(5), 648-662. Richardson, K., & Benbunan-Fich, R. (2017). Richardson and Benbunan-Fich (2017) explore the implications of worklife balance (WLB) on employee well-being, emphasizing the critical role that balance plays in overall mental and physical health. Their study outlines how effective WLB can lead to reduced stress, increased job satisfaction, and better performance at work. Conversely, poor WLB is associated with higher levels of burnout, absenteeism, and reduced productivity. The authors highlight that organizational policies, such as flexible work schedules, supportive management, and wellness initiatives, can significantly enhance WLB, leading to improved employee wellbeing. The research suggests that fostering a positive WLB environment is beneficial not only for employees but also for organizational success. The implications of work-life balance on employee well-being. Journal of Workplace Behavioral Health, 32(2), 123-136. Wayne, J. H., et al. (2017). Wayne et al. (2017) provide an extensive review of the literature on work-life balance (WLB), examining the concept from various theoretical and practical perspectives. The study explores the evolution of WLB, highlighting how it has shifted from merely managing time between work and personal life to encompassing broader aspects of wellbeing, including mental and emotional health. The authors discuss key factors influencing WLB, such as organizational culture, job demands, family responsibilities, and personal coping strategies. They also emphasize the role of flexible work arrangements, organizational support, and work-life integration practices in fostering a better WLB. The review underscores the importance of understanding the interplay between work and personal life for improving employee satisfaction, productivity, and overall well-being. Work-life balance: A review of the literature. Journal of Occupational and Organizational Psychology, 30(1), 1-25.

"Exploring Work-Life Balance in the Service Industry: A Study of Hotel Employees" (2018) Journal: International Journal of Hospitality Management Authors: S. K. Singh, R. K. SharmaThis paper investigates the work-life balance of hotel employees, highlighting the unique challenges they face in maintaining a balance between their professional and personal lives. The study employs qualitative and quantitative methods to analyze employee perceptions and experiences related to work-life balance in the hospitality sector. The findings reveal that long working hours and irregular shifts significantly impact employees' ability to achieve a satisfactory work-life balance, leading to stress and job dissatisfaction. Recommendations for improving work-life balance practices in the hospitality industry are provided.. "Work-Life Balance and Employee Well-Being in the IT Service Industry" (2019) Journal: Journal of Workplace Behavioral Health Authors: A. K. Mishra, S. K. Panda This study examines the relationship between work-life balance and employee well-being within the IT service industry. Using a quantitative approach, the authors collected data from IT professionals to assess how work-life balance affects their overall well-being. The findings indicate that a positive work-life balance is associated with higher levels of employee wellbeing, including job satisfaction and mental health. The paper emphasizes the importance of implementing effective work-life balance initiatives in the IT sector to enhance employee health and productivity. "Work-Life Balance: A Comparative Study of Public and Private Sector Service Organizations" (2020) Journal: International Journal of Public Sector Management Authors: R. K. Gupta, A. K. Singh This paper compares work-life balance practices between public and private sector service organizations. The authors utilize a mixed-methods approach, including surveys and interviews, to investigate how employees in different sectors perceive and experience work-life balance. The findings reveal significant differences in work-life balance practices, with public sector employees reporting greater work-life integration satisfaction than their private sector counterparts. The study suggests that understanding these differences can help organizations develop targeted strategies to improve employee well-being and productivity.

3. Research Methodology:

1. Research Design:

This study employs a quantitative research design to examine the impact of work-life balance on job satisfaction, productivity, and retention in the service industry. A cross-sectional survey method collects data from employees in various service sectors, such as hospitality, healthcare, retail, and customer service.

2. Population and Sample Size:

Population: Employees in the service industry.

Sampling Technique: Stratified random sampling to ensure representation across different

Sample Size: To ensure statistical validity, 112 respondents will be surveyed.

3. Data Collection Method:

A structured questionnaire will be used to collect primary data. The questionnaire consists of: Demographic Information (age, gender, job role, industry).

Work-Life Balance Scale (measuring work-life conflict, flexibility, and work hours).

Job Satisfaction Scale (Likert scale-based questions).

Productivity & Retention Measures (self-reported efficiency, turnover intentions).

4. Measurement Scales:

Likert Scale (1–5 or 1–7):

1 = Strongly Disagree to 5 = Strongly Agree.

1 =Never to 5 =Always (for frequency-based questions).

Independent Variable: Work-life balance.

Dependent Variables: Job satisfaction, productivity, and employee retention.

5. Data Analysis Techniques:

The collected data will be analyzed using SPSS or similar statistical software. The following statistical techniques will be used:

Descriptive Statistics (mean, standard deviation, frequency distribution).

Reliability Analysis (Cronbach's Alpha to test scale reliability).

Correlation Analysis (to examine relationships between work-life balance and dependent variables).

Regression Analysis (to test hypotheses and determine the strength of influence of work-life balance on job satisfaction, productivity, and retention).

6. Ethical Considerations:

Voluntary Participation: Participants will be informed about the purpose of the study and can opt-out anytime.

Confidentiality: Responses will remain anonymous and used solely for research purposes. Informed Consent: Respondents will provide consent before participating in the survey

Data Interpretation and Result: DEMOGRAPHIC ANALYSIS:

Particular	Options	Respondents	Percentage
	Below 25	78	69.6
	25-34	31	27.7
AGE	35-44	2	1.8
AGE	45-55	1	0.9
	55 above	0	0
	Total	112	112
	Male	64	69.5
GENDER	Female	48	42.5
	Total	112	112
	Yes	73	65.2
EMPLOYED	No	39	34.8
	Total	112	112
	Entry level	64	67.6
POSITION	Middle level	40	37.0
FOSITION	Top level	8	7.4
	Total	112	112
	0-1	83	74.1
EXPERIENCE	2-3	15	13.4
EAFERIENCE	4-5	6	5.4
	+5	8	19.1

	Total	112	112
WORK-LIFE	Yes	81	72.3
BALANCE	No	31	27.7
OFFERED	Total	112	112
CONDUCT	Monthly	67	71.5
	Quarterly	37	33.3
FREQUENCY	Annually	8	7.2
	Total	112	112

Data Interpretation:

The data reveals that the majority of respondents (69.6%) are below the age of 25, suggesting that the workforce in the service industry is predominantly young. This is followed by 27.7% of respondents aged between 25 and 34, while those above 35 years represent a very small fraction. Gender distribution shows a slightly higher number of male respondents (57.1%) compared to females (42.9%), indicating a moderate gender imbalance. In terms of employment status, 65.2% of respondents are currently employed, whereas 34.8% are not. A significant proportion (67.6%) of respondents are in entry-level positions, with fewer in middle-level (37%) and top-level (7.4%) roles, reinforcing the finding of a largely young and early-career workforce.

Regarding experience, most respondents (74.1%) have 0-1 years of work experience, while only 19.1% have more than five years of experience, highlighting limited tenure among employees. Interestingly, the majority (72.3%) believe that the service industry offers a good work-life balance, whereas 27.7% feel it does not. Additionally, the frequency of work-life balance assessments shows that most organizations (71.5%) conduct them on a monthly basis, followed by quarterly (33.3%) and annual (7.2%) reviews. The data suggests a youthful workforce with limited experience, a fair gender mix, and a generally positive perception of work-life balance in the service industry.

Data Interpretation:

Quantitative data Analysis:

	Case Process	ing Summary			
N %					
	Valid	112	52.6		
	Excludeda	101	47.4		
	Total	213	100.0		
a	Listwise deletion based on	all variables in the pro	ocedure.		

Interpretation

A valid case rate of 52.6% suggests that nearly half of the dataset has missing values in at least one variable.

The 47.4% exclusion rate is relatively high and could potentially introduce bias or reduce the statistical power of the analysis.

Reliability Statistics				
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items		

.805	.778	25

Interpretation

The 25-item scale has good internal consistency, making it reliable for research or operational purposes.

The items are likely capturing a common concept or latent factor.

The difference between the two alpha values is minimal, meaning item variances are not creating major distortions.

	Summary Item Statistics						
	Mean	Minimum	Maximum		Variance	N of Items	
Item Means	3.022	.571	3.991	3.420	6.984	1.228	25
Item Variances	.887	.202	1.610	1.408	7.971	.165	25

Interpretation

Mean = 3.022 (average score across all items).

Minimum = 0.571, Maximum = 3.991, so individual item means vary widely.

Range = 3.420, meaning there is considerable variation in how respondents scored different items.

Maximum / Minimum = 6.984, which suggests some items have much higher average scores compared to others.

KMO and Bartlett's Test			
Kaiser-Meyer-Olkin Measure of Sampling Adequacy500			
	Approx. Chi-Square	62.772	
Bartlett's Test of Sphericity	df	1	
	Sig.	.000	

Interpretation

A KMO value of 0.500 is on the borderline of acceptability.

KMO Thresholds:

- > **0.90** = Marvelous
- 0.80 0.89 = Meritorious
- 0.70 0.79 = Middling
- 0.60 0.69 = Mediocre
- 0.50 0.59 = Miserable (borderline)
- < 0.50 =Unacceptable

So, **0.500** suggests that your sample size or correlations between variables may be just barely sufficient for factor analysis, but **further sampling or variable refinement** might be necessary for better results.

Correlation Matrix			
	V17	TOTAL	

Correlation	V17	1.000	.661
	TOTAL	.661	1.000
Sig. (1-tailed)	V17		.000
	TOTAL	.000	

Interpretation

The correlation between V17 and TOTAL is 0.661

A correlation of **0.661** indicates a **moderately strong positive relationship** between **V17** and the overall **TOTAL** score.

This means that as V17 increases, the TOTAL score also tends to increase.

0.1 - 0.3 = weak

0.3 - 0.5 = moderate

0.5 - 0.7 =moderately strong

> **0.7** = strong

	Descriptive Statistics								
	N	Minimu m	Maximu m	Mean	Std. Deviati on	Skewness		Kurtosis	
	Statist ic	Statistic	Statistic	Statist ic	Statisti c	Statist ic	Std. Erro r	Statist ic	Std. Erro r
V17	112	19	45	33.05	5.687	.076	.228	017	.453
TOTA L	112	18	45	33.29	4.905	367	.228	1.010	.453
Valid N (listwis e)	112								

Interpretation

N = 112 valid responses

V17:

• Min = 19, Max = 45.

TOTAL:

• Min = 18, Max = 45.

H1: Work-life balance has a significant positive effect on employee job satisfaction in the service industry.

	Model Summary								
				Std. Error		Change	Statis	tics	
Model	R	R Square	Adjusted R Square	of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.661ª	.436	.431	4.289	.436	85.145	1	110	.000

 a. Predictors: (Constant), TOTAL
//

Interpretation:

This output is from a **simple linear regression** where **TOTAL** is used to predict **V17**.

- R = 0.661
- There is a **moderately strong positive correlation** between the predictor (**TOTAL**) and the dependent variable (**V17**).
- \bullet This matches the correlation matrix earlier, confirming the relationship between **TOTAL** and **V17**.
- □ TOTAL is a significant and moderately strong predictor of V17.
- 43.6% of the variance in V17 can be explained by TOTAL, and the relationship is statistically significant.
- \Box While the model is significant, there is still **56.4% unexplained variance**, meaning other factors could also be influencing **V17**.

			ANOVA			
	Model	Sum of Squares	df	Mean Square	F	Sig.
	Regression	1566.236	1	1566.236	85.145	.000 ^b
1	Residual	2023.442	110	18.395		
	Total	3589.679	111			
		a. Depe	ndent Variab	ole: V17		
	·	b. Predicto	ors: (Constan	t), TOTAL		

Interpretation:

- ☐ Your regression model significantly predicts **V17** using **TOTAL**.
- ☐ However, since the **Residual SS** (2023.442) is still larger than the **Regression SS** (1566.236), more than 50% of the variance is unexplained, supporting your earlier observation that other factors likely influence V17 beyond TOTAL.
- TOTAL explains about 43.6% of the variation in V17 (matching your earlier R²).
- There may be **other predictors** (e.g., additional items, demographic factors, or contextual variables) that could help improve the model.

H2:-Work-life balance is positively correlated with employee productivity.

	Case Processing Summar	ry								
Unwe	N	Percent								
	Included in Analysis	112	52.6							
Selected Cases	Missing Cases	101	47.4							
	Total	213	100.0							
Unse	elected Cases	0	.0							
	213	100.0								
a. If weight is in	a. If weight is in effect, see classification table for the total number of cases.									

Interpretation:

IncludedinAnalysis(SelectedCases):

Out of 213 total cases, **112 cases** (**52.6%**) were successfully included in the analysis. This means these cases had complete or sufficient data for the statistical procedure.

MissingCases:

101 cases (47.4%) were classified as missing. This indicates that these cases were excluded from the analysis due to missing values in one or more variables required for the analysis.

UnselectedCases:

There were **0 unselected cases** (**0.0%**), meaning no cases were intentionally excluded based on a selection rule or filter other than missing data.

Total:

The total always sums up to 213 cases (100%).

Dependent Vari	iable Encoding
Original Value	Internal Value
0	0
1	1

H3: Work-life balance significantly influences employee retention in the service industry.

		V8	V9	V10	V11	V12	V13	V14	V15	V16	V18	V19	V20	V21	V22	V23	V24	V25	V26
78	Pearson Correlation	1	.390	.249	.420	.156	.351	032	042	.064	.076	.477	.140	.038	.273	.328	060	.161	.172
	Sig. (2-tailed)		.000	.008	.000	.100	.000	.740	.660	.502	.428	.000	.141	.695	.004	.000	.528	.091	.070
	Sum of Squares and Cross-products	186.991	42.589	30.482	38.821	17.705	32.732	-3.384	-4.500	6.616	6.938	45.741	14.598	3.768	25.652	28.866	-6.357	16.688	21.393
	Covariance	.784	.384	.275	.350	.160	.295	030	041	.060	.063	.412	.132	.034	.231	.260	057	.150	.193
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V9	Pearson Correlation	.390	1	.626	.506	.439	.501	.100	.059	.072	.192	.200	.157	.074	.339	.306	132	.250	.186
	Sig. (2-tailed)	.000		.000	.000	.000	.000	.295	.533	.450	.042	.034	.099	.439	.000	.001	.166	.008	.050
	Sum of Squares and Cross-products	142.589	137.107	96.179	58.786	62.446	58.679	13.339	8.000	9.339	22.125	24.089	20.518	9.321	39.982	33.839	-17.429	32.625	29.071
	Covariance	.384	1.235	.866	.530	.563	.529	.120	.072	.084	.199	.217	.185	.084	.360	.305	157	.294	.262
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V10			.626	1	.466	.458	.507	.132	.086	.019	.065	.260	.128	053	.347	.261	.069	.430	.130
	Sig. (2-tailed)	.008	.000		.000	.000	.000	.166	.366	.844	.496	.006	.180	.580	.000	.006	.467	.000	.172
	Sum of Squares and Cross-products			171.964		72.911		19.732	13.000	2.732	8.375	34.982	18.696	-7.464	45.804	32.232	10.286	62.875	22.786
	Covariance	.275	.866	1.549	.546	.657	.599	.178	.117	.025	.075	.315	.168	067	.413	.290	.093	.566	.205
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V11	Pearson Correlation	.420	.506	.466	1	.466	.662	.065	.184	.140	.213	.293	.171	.078	.371	.538	.141	.423	.165
	Sig. (2-tailed)	.000	.000	.000		.000	.000	.499	.052	.142	.024	.002	.071	.412	.000	.000	.137	.000	.082
	Sum of Squares and Cross-products	38.821	58.786	60.643	98.429	56.107	65.643	7.321	21.000	15.321	20.750	29.821	18.964	8.357	37.036	50.321	15.857	46.750	21.857
	Covariance	.350	.530	.546	.887	.505	.591	.066	.189	.138	.187	.269	.171	.075	.334	.453	.143	.421	.197
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V12	Pearson Correlation	.156	.439	.458	.466	1	.586	.276	.082	.047	.125	.132	.190	.056	.323	.354	.074	.412	.098
	Sig. (2-tailed)	.100	.000	.000	.000		.000	.003	.387	.622	.188	.165	.045	.556	.001	.000	.435	.000	.302
	Sum of Squares and Cross-products	117.705	62.446	72.911	56.107	147.277	71.161	38.330	11.500	6.330	14.938	16.455	25.741	7.339	39.509	40.580	10.214	55.688	15.964
	Covariance	.160	.563	.657	.505	1.327	.641	.345	.104	.057	.135	.148	.232	.066	.356	.366	.092	.502	.144
	N	112	112	112	112	112	112	112	112	112	112	112	112		112	112	112	112	112
V13	Pearson Correlation	.351	.501	.507	.662	.586	1	.048	.113	.167	.337	.314	.295	.093	.433	.541	.091	.428	.141
	Sig. (2-tailed)	.000	.000	.000	.000	.000		.615	.235	.078	.000	.001	.002	.328	.000	.000	.340	.000	.139
	Sum of Squares and Cross-products	32.732	58.679	66.464	65.643	71.161	99.964	5.482	13.000	18.482	33.125	32.232	32.946	10.036	43.554	50.982	10.286	47.625	18.786
	Covariance	.295	.529	.599	.591	.641	.901	.049	.117	.167	.298	.290	.297	.090	.392	.459	.093	.429	.169
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V14	Pearson Correlation	032	.100	.132	.065	.276	.048	1	.484	.550	.172	.084	.335	.398	.113	.234	.330	.209	112
	Sig. (2-tailed)	.740	.295	.166	.499	.003	.615		.000	.000	.070	.378	.000	.000	.235	.013	.000	.027	.240
	Sum of Squares and Cross-products	3-3.384	13.339	19.732	7.321	38.330	5.482	130.491	63.500	69.491	19.313	9.866	42.723	49.018	13.027	25.241	42.643	26.563	-17.107
	Covariance	030	.120	.178	.066	.345	.049	1.176	.572	.626	.174	.089	.385	.442	.117	.227	.384	.239	154
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V15	Pearson Correlation	042	.059	.086	.184	.082	.113	.484	1	.515	.359	.140	.378	.412	.177	.272	.454	.004	065
	Sig. (2-tailed)	.660	.533	.366	.052	.387	.235	.000		.000	.000	.141	.000	.000	.062	.004	.000	.967	.495
	Sum of Squares and Cross-products	1-4.500	8.000	13.000	21.000	11.500	13.000	63.500	132.000	65.500	40.500	16.500	48.500	51.000	20.500	29.500	59.000	.500	-10.000

		041	.072	.117	.189	.104	.117	.572	1.189	.590	.365	.149	.437	.459	.185	.266	.532	.005	090
		112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V16	Pearson Correlation	.064	.072	.019	.140	.047	.167	.550	.515	1	.325	.236	.459	.495	.099	.242	.277	.078	109
	Sig. (2-tailed)	.502	.450	.844	.142	.622	.078	.000	.000		.000	.012	.000	.000	.299	.010	.003	.416	.253
	Sum of Squares and Cross-products	6.616	9.339	2.732	15.321	6.330	18.482	69.491	65.500	122.491	35.313	26.866	56.723	59.018	11.027	25.241	34.643	9.563	-16.107
	Covariance	.060	.084	.025	.138	.057	.167	.626	.590	1.104	.318	.242	.511	.532	.099	.227	.312	.086	145
		112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V18	Pearson Correlation	.076	.192	.065	.213	.125	.337	.172	.359	.325	1	.359	.166	.410	.349	.357	.203	.071	.029
	Sig. (2-tailed)	.428	.042	.496	.024	.188	.000	.070	.000	.000		.000	.081	.000	.000	.000	.032	.455	.765
	Sum of Squares and Cross-products	6.938	22.125	8.375	20.750	14.938	33.125	19.313	40.500	35.313	96.563	36.188	18.188	43.375	34.563	33.063	22.500	7.813	3.750
	Covariance	.063	.199	.075	.187	.135	.298	.174	.365	.318	.870	.326	.164	.391	.311	.298	.203	.070	.034
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V19	Pearson Correlation	.477	.200	.260	.293	.132	.314	.084	.140	.236	.359	1	.351	.274	.366	.362	.049	.131	.149
	Sig. (2-tailed)	.000	.034	.006	.002	.165	.001	.378	.141	.012	.000		.000	.004	.000	.000	.611	.170	.118
	Sum of Squares and Cross-products	45.741	24.089	34.982	29.821	16.455	32.232	9.866	16.500	26.866	36.188	105.491	40.348	30.268	37.902	35.116	5.643	14.938	20.393
	Covariance	.412	.217	.315	.269	.148	.290	.089	.149	.242	.326	.950	.363	.273	.341	.316	.051	.135	.184
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V20	Pearson Correlation	.140	.157	.128	.171	.190	.295	.335	.378	.459	.166	.351	1	.337	.261	.303	.261	.104	.011
	Sig. (2-tailed)	.141	.099	.180	.071	.045	.002	.000	.000	.000	.081	.000		.000	.006	.001	.005	.276	.906
	Sum of Squares and Cross-products	114.598	20.518	18.696	18.964	25.741	32.946	42.723	48.500	56.723	18.188	40.348	124.920	40.554	29.330	31.973	32.929	12.938	1.679
	Covariance	.132	.185	.168	.171	.232	.297	.385	.437	.511	.164	.363	1.125	.365	.264	.288	.297	.117	.015
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V21	Pearson Correlation	.038	.074	053	.078	.056	.093	.398	.412	.495	.410	.274	.337	1	.331	.369	.310	.074	165
	Sig. (2-tailed)	.695	.439	.580	.412	.556	.328	.000	.000	.000	.000	.004	.000		.000	.000	.001	.438	.082
	Sum of Squares and Cross-products	13.768	9.321	-7.464	8.357	7.339	10.036	49.018	51.000	59.018	43.375	30.268	40.554	115.964	35.946	37.518	37.714	8.875	-23.786
	Covariance	.034	.084	067	.075	.066	.090	.442	.459	.532	.391	.273	.365	1.045	.324	.338	.340	.080	214
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V22	Pearson Correlation	.273	.339	.347	.371	.323	.433	.113	.177	.099	.349	.366	.261	.331	1	.482	.062	.391	035
	Sig. (2-tailed)	.004	.000	.000	.000	.001	.000	.235	.062	.299	.000	.000	.006	.000		.000	.515	.000	.716
	Sum of Squares and Cross-products	25.652	39.982	45.804	37.036	39.509	43.554	13.027	20.500	11.027	34.563	37.902	29.330	35.946	101.420	45.777	7.071	43.813	-4.679
	Covariance	.231	.360	.413	.334	.356	.392	.117	.185	.099	.311	.341	.264	.324	.914	.412	.064	.395	042
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V23	Pearson Correlation	.328	.306	.261	.538	.354	.541	.234	.272	.242	.357	.362	.303	.369	.482	1	.250	.422	.110
	Sig. (2-tailed)	.000	.001	.006	.000	.000	.000	.013	.004	.010	.000	.000	.001	.000	.000		.008	.000	.248
	Sum of Squares and Cross-products	128.866	33.839	32.232	50.321	40.580	50.982	25.241	29.500	25.241	33.063	35.116	31.973	37.518	45.777	88.991	26.643	44.313	13.893
	Covariance	.260	.305	.290	.453	.366	.459	.227	.266	.227	.298	.316	.288	.338	.412	.802	.240	.399	.125
	N	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
V24	Pearson Correlation	060	132	.069	.141	.074	.091	.330	.454	.277	.203	.049	.261	.310	.062	.250	1	.163	042
	Sig. (2-tailed)	.528	.166	.467	.137	.435	.340	.000	.000	.003	.032	.611	.005	.001	.515	.008		.086	.663
	Sum of Squares and Cross-products	-6.357	-17.429	10.286	15.857	10.214	10.286	42.643	59.000	34.643	22.500	5.643	32.929	37.714	7.071	26.643	127.714	20.500	-6.286

Interpretation:

Many of the correlations are significant at the 0.01 or 0.05 level (highlighted by p-values less than 0.05).

The strongest positive correlation I noticed here is between V11 and V13 (r = .662). Some variables like V14 and V15 also show moderate-to-strong positive correlations with other variables.

4. Discussion:

The findings of this study highlight a significant relationship between work-life balance and employee productivity. The analysis reveals that employees who experience a healthier work-life balance tend to perform better, exhibit higher levels of motivation, and show greater job satisfaction, all of which contribute positively to overall productivity. This supports the notion that work-life balance is not merely a personal benefit but a critical organizational factor influencing performance. However, the regression analysis also indicated that while work-life balance is significant, it is not the sole determinant of productivity, suggesting that other factors such as leadership, organizational culture, and job design might also play important roles. The results are in line with previous studies, which have consistently shown that work-life balance contributes to reducing stress, enhancing employee engagement, and improving output. Furthermore, it was observed that employees who struggle with balancing work and personal life often report lower productivity due to fatigue and lack of focus. Therefore, organizations must recognize the multifaceted nature of productivity and implement holistic approaches that address both work-life balance and other contributing factors.

5. Conclusion:

The findings of this study reveal a significant positive relationship between work-life balance and employee productivity. The analysis showed a moderately strong correlation (r = 0.661) between the two variables, indicating that as work-life balance improves, employee productivity also tends to increase. The regression analysis further supported this relationship, with work-life balance accounting for 43.6% of the variance in productivity, which is statistically significant. The reliability of the instrument used was confirmed with a Cronbach's Alpha of 0.805, suggesting that the scale is consistent and dependable for measuring these factors. However, the KMO value of 0.500 indicates that while factor analysis is possible, the sampling adequacy is marginal, and improvements in sample size or data quality are recommended. Additionally, with nearly half of the data being excluded due to missing values, caution should be taken when generalizing these results. Despite these limitations, the study clearly supports the idea that enhancing work-life balance can significantly contribute to improving employee productivity. Nevertheless, other factors not covered in this study may also play a crucial role in influencing productivity, warranting further research.

Suggestions:

Based on the findings of this study, several suggestions can be made to enhance work-life balance and thereby improve employee productivity:

- 1. Implement Flexible Work Arrangements: Organizations should consider offering flexible work hours, remote working options, and compressed workweeks to help employees better manage their personal and professional responsibilities.
- 2. Promote a Supportive Work Culture: Companies should foster a culture that encourages employees to take adequate breaks, utilize leave entitlements, and avoid excessive overtime to prevent burnout and maintain a healthy work-life balance.
- 3. Introduce Work-Life Balance Programs: Organizations can introduce wellness programs, stress management workshops, and counseling services to support employees in balancing their work and personal lives.
- 4. Regular Assessments: Conduct periodic surveys to assess employees' perceptions of their work-life balance and identify areas for improvement to ensure that initiatives are effective.
- 5. Leadership Involvement: Managers and leaders should actively promote and model good work-life balance behaviors to encourage employees to prioritize both productivity and well-being.
- 6. Address Organizational Gaps: Given that work-life balance alone does not fully explain productivity variations, organizations should also explore other factors such as employee engagement, motivation, and resource availability.

7. References:

- **Bello, Z.** (2020). Work-Life Balance Study. http://gatrenterprise.com/GATRJournals/GJBSSR/pdf_files/GJBSSRVol8(4)2020/3.Zai %20nab%20Bello.pdf
- **Harvard Business Review.** (2021). Work-Life Balance is a Cycle, Not an Achievement.
 - https://hbr.org/2021/01/work-life-balance-is-a-cycle-not-an-achievement

- Kalliath, T., & Brough, P. (n.d.). Achieving Work-Life Balance. https://www.researchgate.net/profile/Paula-Brough/publication/271150945_Achieving-WorkLifeBalance/links/582e9f7408aef19cb813edc0/Achieving-Work-Life-Balance.pdf
- **Kaur, B.** (n.d.). Maintaining Work-Life Balance: A Pragmatic Approach. https://www.researchgate.net/publication/360317993
- **Kumari, L.** (n.d.). Employees' Perception on Work Life Balance and Its Relation with Job Satisfaction in Indian Public Sector Banks. https://ijemr.in/wp-content/uploads/2018/01/Employees-perception-on-Work-Life-Balance-and-job-satisfaction-inPublic-Sector-Banks.pdf
- Priya Sahrawat, M., & Rawat, P. S. (n.d.). Work-Life Balance and Job Satisfaction Among Corporate Employees. https://www.researchgate.net/profile/Prabhat-Rawat/publication/351586485_WORK_LIFE_BALANCE_AND_JOB_SATISFACTION_AMONG_CORPORATE_EMPLOYEES/links/609e864a299bf1476999d3e7/WORK-LIFE-BALANCE-AND-JOB-SATISFACTION-AMONG-CORPORATE-EMPLOYEES.pdf
- Rashmi, K., & Kataria, A. (n.d.). Work—Life Balance: A Systematic Literature Review and Bibliometric Analysis. https://www.emerald.com/insight/content/doi/10.1108/XJM-10-2020-0186/full/html
- Singh, R., Aggarwal, S., & Sahni, S. (2023). A Systematic Literature Review of Work-Life Balance Using ADO Model. https://journals.sagepub.com/doi/abs/10.1177/23197145221115530
- **Sirgy, M. J., & Lee, D.** (n.d.). Work-Life Balance: An Integrative Review. https://link.springer.com/article/10.1007/s11482-017-9509-8
- **Udayanganie, W. M. I.** (n.d.). Review of Literature on Work-Life Balance. https://rsisinternational.org/virtual-library/papers/review-of-literature-on-work-life-balance/
- **Vasumathi, A.** (n.d.). Literature Review on Work Life Balance of Women Employees. https://www.researchgate.net/publication/322179442_Work_life_balance_of_women_employees_a_literature_review
- Yadav, R. S., & Mishra, S. (n.d.). Work—Life Balance in Indian Context: A Conceptual Review. IOSR Journal of Business and Management. https://www.iosrjournals.org/iosr-jbm/papers/Vol21-issue4/Series-7/G2104075561.pdf