Analysis, Observation, and Estimation of Worker Safety in Indian Mines

¹Mr. Praveen Soneja, ²Ms. Anita Menon, ³Mr. Harsh Awasthi, ⁴Mr. Desh Ratan,

¹Director general, Department of PGDM, Noida Institute of Engineering & Technology (MCA Institute), Greater Noida Uttar Pradesh, India

²Assistant Professor, Department of PGDM, Noida Institute of Engineering & Technology (MCA Institute), Greater Noida Uttar Pradesh, India

³Assistant Professor, Department of Master in Business Administration, Noida Institute of Engineering & Technology, Greater Noida Uttar Pradesh, India

⁴Assistant Professor, Department of Master in Business Administration, Noida Institute of Engineering & Technology, Greater Noida Uttar Pradesh, India

Email Id- ¹Dg@niet.co.in, ²Anita.menon@niet.co.in, ³harsh.awasthi@niet.co.in, ⁴desh.ratan@niet.co.in,

ABSTRACT: The mining business is well-known across the globe for its high-risk, high-hazard work environment. The growth of output levels due to technological advancements in ore extraction processes has raised safety concerns in this business. Thus far this year, science on the subject of safeguarding has shown us that a percentage of events in dangerous situations are preventable. Industries are caused by human error, which may be reduced to a significant amount by controlling it. The current study examines human elements such as hazardous behaviors, as well as the conditions that contribute to harmful behavior, dangerous leadership, and organizational ramifications. To assess the likelihood of fatalities in manganese mines in India, a customized human factor analysis and classification system (HFACS) was used, and a worrisome bizarre coincidences correlation fuzzy reasoning approach (FRA)-based edifice was invented, based on the interpretation of factors such as age, workforce awareness, the shift of jobs, and so on. The outcomes of the analysis revealed that skill-based mistakes are the most hazardous and demand rapid treatment. The developed FRA-based effective predictive system provides a risk score linked with the observed accident-prone situation, which can be utilized to develop an effective mitigation plan.

Keywords: Coal, Human Factors Analysis And Classification System (HFACS), Mining, Noise, Fuzzy.

1. INTRODUCTION

The mining business is well-known for having the most difficult workplace conditions, in that this same worker's health and safety are also a top priority. Researchers in this field of health & welfare have long been interested in mining safety. India's metallurgical and minerals sector has seen rapid growth in recent years, with the country on track to becoming the country's third steel manufacturer by 2015. Similarly, actual numbers increased gradually from 2007 to 2015. As a result, the abrupt spike in magnesium productivity is raised concerns about the facilities' safety. However, accidents at work can be placed primarily on poor workplace environments or improved technology. Richardson and Gosselin performed research in Melbourne, Based, that looked at data acquired for excavations, expansive coalfields, steel plants, metal-binding mines, and subsurface steel industries, and discovered revealed coal is just the major source of pollution. Episodes respectively 2005 and 2016 were skill-based operator errors, noting the need to look at industrial life from either a philosophical standpoint in the Indian context as well. The mishap interpretation of the findings is conducted using the enhanced human factors analysis and classification system (HFACS) framework. Reason's Swiss cheese model is the foundation for the HFACS construction accident model. The Human Factors Analysis and Control System (HFACS) is a universal error structure designed and implemented by that same military to examine and evaluate the primary causal factors occurring. One of the biggest flaws in Reason's approach is the lack of a systematic classification of mistakes [1]–[4].

As illustrated in Figure 1, the above framework is an investigative methodology that allows for the classification of human components involved in either unpleasant incidence that occurs regularly. It is considered that a good security plan may accept the principle of poor administration, work conditions, and personnel characteristics. It might lead to a significant decrease in incidents and accidents, as well as the establishment of a positive safety culture. A total of 88 percent of mishaps are caused by human mistakes, 10% by operational machine-related faults, and 2% by natural disasters. HFACS was originally developed for civil aviation, but its importance was recognized and it was slowly incorporated into these other sectors, For example, accident investigations to evaluate the impacts of human fault in any water mishap, medical research to analyze the far more general human inaccuracy also during surgical procedures, and so on. Even though a similar architecture has been built in Victoria with both coal and metal production, this framework was not specially designed for chrome metal mines. Table 1 shows the swot analysis of the coal mining industry [5]–[8].

Table 1: Illustrates The Swot Analysis Of The Coal Mining Industry.

Strengths • Significant coal reserves, intellectual potential, and world-class scientific and technological resources are all available. • Workforce with years of experience	 Weakness Lignite-fired power plants emit a significant quantity of CO2. Mines need enormous swaths of land to generate coal, hence mining has a severe influence on the ecosystem.
Opportunities The Polish government recognizes the significance of indigenous coal deposits, Growing electricity demand, and the advancement of clean coal technology.	 Threats High carbon credit costs, tightening CO₂ emission policies, and a lack of regulations effectively preserving proven reserves from above-ground construction and infrastructure. Brown coal mining has a negative public reputation.

Data uncertainty, vagueness, and impreciseness may all be resolved using a hairy approach. The employment of a fuzzy-based method in the field of risk management protection owing to the very uncertain and ambiguous character of data connected to safety and accidents. Analysis of such statistics and producing a solid and trustworthy answer for crucial concerns such as sanitation will always be a difficulty, but it seems that this barrier has been overcome in a lot of incidents that have adopted this technique. Figure 2 illustrates the framework for a modernized person analysis and categorization system. DGMS is for the office of the director HFACS stands for human factors analysis; FRA stands for inference research; and FRA stands for inference approach as well as a labeling system. Figure 1 discloses the different kinds of hazards that are caused by coal mining.

Coal Dust

Amongst the most prevalent issues for workers is particulate consumption, sometimes known as coal dust. Continual coal dust inhalation may lead to a condition described as 'miner's pulmonary' or 'black lung.' Miner's lung is a kind of pneumoconiosis, a category of occupational lung disease. Breathing and thickening of pleural space are classic causes, which may lead to long-term breathing difficulties.

Noise

Because quarries are noisy settings with continuous blasting and machinery, there is a substantial risk of hearing loss. It's natural to become aware that you're still making excessively loud voices in your thoughts, but it doesn't mean no harm was done." As most buzzing sound deafness is gradual, many people won't understand that till years after being exposed to a noisy environment.

• Whole Body Vibration

WBV (whole-body vibration) is a slowly emerging corporeal threat that workforces many of whom work with power equipment face Equipment. WBV may be induced in the working context by spending more time sitting on machines, which is the majority of the time in mine operations, or just by upright, such as laboring on gigantic operations. While certain types of shaking are acceptable, others become hazardous since they include rough edges, motor action such as tearing vs pressing debris in a backhoe, including power plant disturbances.

• UV Exposure

Considering the dangers of overexposure to UV (ultraviolet) radiation in sunlight is critical for open-pit workers. Excessive exposure to UV radiation may cause skin cancer, which Australia does have an increased incidence of on the planet. UV rays would not only cause nodules to develop, and so they can also cause huge eye problems if you do not use safety glasses.

Musculoskeletal

Any abnormalities involving your vertebrae, ligaments, blood vessels, or nerves are referred to as musculoskeletal disorders (MSDs). "Miners are confronted with a variety of health concerns that fit under this broad group. A trip, fall, or hefty lift may cause musculoskeletal injuries, but the most severe ones develop over time. This might be a result of constant hard lifting or repeated straining [9], [10].

• Thermal Stress

Thermal – or heat–stress is a frequent health issue for miners. Mining settings are Problems stem from environmental stress as a result of the humid conditions, primarily in northern Australia. An overabundance of tropical heat may make the body tired and agitated. This may lead to heat strokes or other more significant long-term health complications.

Chemical Hazards

Hazardous chemicals are often used in mines, and mine employees are left vulnerable to them. Polymeric compounds, in particular, are the most prevalent kind of chemical that causes worry in a coal mine. Whatever pollutants you deal with in close contact, you must wear protective clothing and take care to limit your body's vulnerability. Electrical blisters, breathing issues, and poisoning are all possible side effects [11], [12].

Figure 1: Illustrates A Different Kind Of Coal Mining Hazards [13], [14].

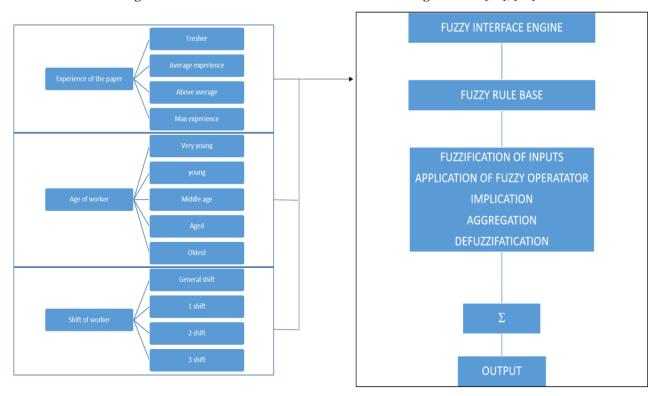


Figure 2: Illustrates The Framework For A Modernized Person Analyses And Categorization System. DGMS Is for the Office of the Director HFACS stands for Human Factors Analysis in Miners Rescue; FRA stands for Fuzzy Reasoning Approach; and FRA stands for Fuzzy Reasoning Approach. As Well As Labelling System [15], [16].

2. LITERATURE REVIEW

Trinchera et al. in their study embellished that the Mining industry in Chinese is on the rise, and thus the resulting mine safety debris is becoming a rising occupational hazard. Mine operational battlefields sediment management sites, and road traffic sites at a transparent semiconductor fab in China's Xingjian Region that is active and highly sensitive charcoal were investigated in this research. The authors applied different methodologies in this paper such that they studied the main gases that are harming the mine workers' health rapidly. This research found differences in neutrino structure and shape between DD from impoundment management, car a significant impact of DD soil moisture and gunk fixed interest on nanoparticles and, as either a result, on possibility air pollutants; a positive impact of the vehicle but rather coal required to operate front sites on nanoparticles and, like a matter of fact, on potential exhaust fumes; a real impact of DD soil moisture and effluents high interest on nanoparticles and, as either a result, on prospect and a plethora of photographs out from the coal-mining front in the influence of certain mining activities and mine locations on air pollution levels, such as high PM levels from tailed mining [17].

Li et al. in their study illustrate that Coal dust poses a danger to the health and health of underground mines employees. One of the most efficient dust removal procedures is wet dusting. Coal has a variety of rough roads as just a solid, each of which has a varied influence on the soaking influence of coal. In this research, Li et al. applied methodology in which they collected three coal samples with variable surface wettability utilized as study items inside this work. To model the wetting of raindrops on uneven ground, the process interaction tracking approach is utilized. In conclusion, the impact of the rougher surface on the contact area of the droplet is in agreement with the change rule indicated in the Wenzel model, according to the simulation findings. The result shows contact area of the aqueous lignite ground decreases significantly as the roughness rises. The interfacial tension of hydrophilic coking coal steadily rises as the roughness increases [18].

Liu et al. in their study embellished that in this research Liu et al. applied different methodologies in which Coal dust exposure may be avoided by using administrative measures. Coal miners' health may be harmed by improper coal dust management. Despite several attempts to remove these dangers, the Appalachian basin in the United States has experienced an unanticipated surge in coal miners' pneumoconiosis (CWP) in recent years. The result shows the toxicity of nanoparticles used in other sectors, such as carbon nanotubes and hydrogen is affecting the miners based on their findings, the author believes that perovskite coal dust has played a role in the recent rise in CWP prevalence. In conclusion the real monitoring techniques and infrastructure for dendrimer toxic smoke; and innovation of part of the risk management techniques and infrastructure. The goal of this research is to show how coal dust qualities differ and how they affect mine laborers' health. The author believes that the influence of nano-sized underground mines dust on migrant well-being is still poorly known, so further research is needed [19].

3. DISCUSSION

India extracted 702 million tons of coal (792, 000,000 short tonnes) in 2018. Making it the world's second-biggest producer and user of coal behind China. Coal accounts for more than 40% of India's energy. Coal is imported to the tune of 30%. India produces combustion coal to meet the steel industry's demands in factories due to competition and low average quality. Dhanbad, India's biggest coal-producing city, is known as the country's coal capital. Between its nationalization in 1973 and 2018, state-owned Coal India gained control of coal mining. The majority of coal is used to create energy, and coal is used to generate the majority of electricity, however, coal-fired power stations have been criticized for violating environmental standards. The coal business has significant health and environmental effect, and phasing it out would yield immediate health and environmental advantages that will outweigh the costs. India's new solar farms provide electricity at a lower cost than the country's current coal facilities. Table 2 illustrates the different categories of the mining section. Figure 3 embellished the different data sets of the mining sections. Table 3 illustrates the different company growth and targets in the coal industries. Figure 4 illustrates the different perspectives on coal mining. Table 4 illustrates the different coal production years in the sector. Figure 5 discloses the different production years of coal mining in the sector.

Table 2: Illustrates the Different Categories of the Mining Section

Group Of Employed	Errors Caused by	Errors in	Perceptual	Violation
	a Lack of Skill	judgment	Mistakes	
Subversive Filling	5	14	4	5
Underground Mining	54	13	7	9
Open Cast Transportation	5	7	2	18
Open Cast Mining	6	8	4	2
Open Cast Mechanical	17	14	12	14
Surface Working	1	3	2	1

Workers Others	23	4	6	9

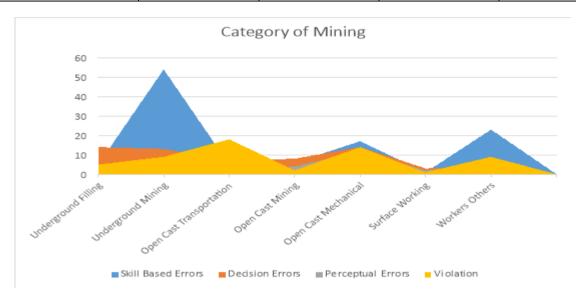


Figure 3: Embellished The Different Data Set Of The Mining Sections.

Table 3: Illustrates The Different Company Growth And Targets In The Coal Industries.

Company	Target	Ach. (Prov)	Actual During Cores	Growth (%)	Target	Ach. (Prov.)	Actual During Cores	Growth (%)
Company CIL	Target 670	Ach. (Prov) 44.34	period of the previous year	Growth (%) 5.3	Target 740	Ach. (Prov.) 89	period of the previous year	Growth (%) 16.73
			515.1				33	
SCCL	68	54.45	44.78	32.52	68	59	56	39.88
Captive*	99	76.18	76.45	38.23	99	44	65	37.89
Others*	11	4.37	5.604	67	78	78	67	77
Total	848	45	32	9.92	918	54	67	19.91

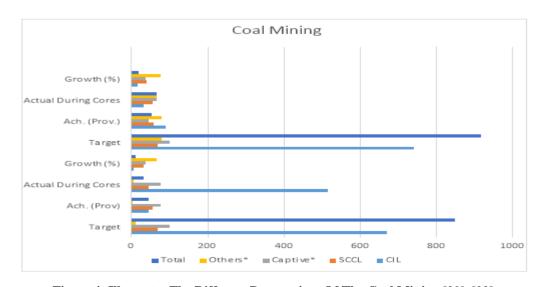


Figure 4: Illustrates The Different Perspectives Of The Coal Mining [20]–[22].

Table 4: Illustrates The Different Coal Production Years In The Sector.

Coal	2015-16	2016-17	2017-18	2018-19	2019-20	2020- 21(Prov.)
Coking Coal	43.66	42.67	45.87	52.34	56.67	52.56
Non- Coking Coal	158.44	150.44	162.45	177.67	197.45	166.78
Total Coal Import	210	187	224	276	254	287
Coke	3.98	6.87	5.7	6	4.65	3.54

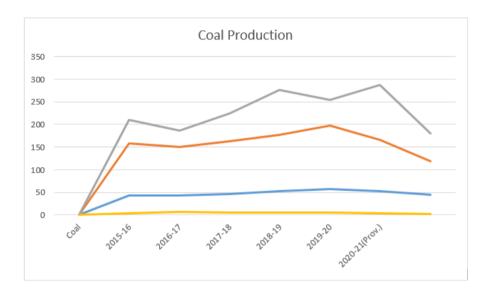


Figure 5: Discloses the Different Production Years of the Coal Mining In the Sector [23]-[25].

4. CONCLUSION

The study examines mining incidents in India's underground and open-cast manganese oxide mines in great detail. The study was carried out using the HFACS framework, and substantial results were achieved. An FRA model was created based on the results to evaluate the danger level for a specific circumstance and adjust it if it was deemed to be critical. The following is a summary of the research findings. Employees' unsafe actions were determined considered be a more essential factor in the creation of delays and cancellations in mines, with individuals' skill-based errors playing the most crucial role. When creating countermeasures, the excavating approach, resting area, First shift of operation, and employees aged 33 to 47 decades old with 6 to a decade of experience are by far the most significant factors to take into account. The findings of the HFACAS study identified problematic constructs and organizational defects that might be leveraged to develop industry-specific countermeasures and remediation approaches. Risky occupations that lead to disaster are strongly linked to the seniority of the individual, his or their employment, and the period in then he or she operates. The recommended FRA-based risk methodology can be used by the health expert consequences.

Our research provided here shows an acceptable method for assessing risk and protection. Caused of a lack of statistics, online surveys, and appointment data science, investigation work on the subject of building maintenance has lately been shown to be limited in scale conclusion suggested is the trend towards accidents or causes for the disaster. However, the current study goes a step further than previous work in this field, in that the results of micro-level accident analysis were used to create an accident predictor that could understand and change relative risk levels tied to a specific condition. The study may be expanded in the future to include additional minerals produced for commercial purposes in India and site stability can be enhanced.

REFERENCES

- [1] V. A. Mugabe, E. S. Gudo, O. F. Inlamea, U. Kitron, and G. S. Ribeiro, "Natural disasters, population displacement and health emergencies: multiple public health threats in Mozambique," *BMJ Glob. Heal.*, vol. 6, no. 9, p. e006778, Sep. 2021, doi: 10.1136/bmjgh-2021-006778.
- Z. lei Li, X. qiu He, L. ming Dou, D. zhao Song, G. feng Wang, and X. liang Xu, "Investigating the mechanism and prevention of coal mine dynamic disasters by using dynamic cyclic loading tests," *Saf. Sci.*, vol. 115, pp. 215–228, 2019, doi: 10.1016/j.ssci.2019.02.011.
- [3] J. S. Reif, "Animal sentinels for environmental and public health," *Public Health Rep.*, vol. 126, no. SUPPL. 1, pp. 50–57, 2011, doi: 10.1177/00333549111260s108.
- [4] Y. Shekarian, E. Rahimi, N. Shekarian, M. Rezaee, and P. Roghanchi, "An analysis of contributing mining factors in coal workers' pneumoconiosis prevalence in the United States coal mines, 1986–2018," *Int. J. Coal Sci. Technol.*, vol. 8, no. 6, pp. 1227–1237, 2021, doi: 10.1007/s40789-021-00464-y.
- [5] T. O'Dwyer *et al.*, "Sub-Clinical Effects of Outdoor Smoke in Affected Communities," *Int. J. Environ. Res. Public Health*, vol. 18, no. 3, p. 1131, Jan. 2021, doi: 10.3390/ijerph18031131.
- [6] B. Zhao *et al.*, "Early life exposure to coal mine fire and tobacco smoke affect subclinical vascular function," *Arch. Dis. Child.*, vol. 105, no. 6, pp. 539–544, 2020, doi: 10.1136/archdischild-2019-317528.
- [7] N. Zhang, Y. Liao, and Z. Ren, "Evaluating an intervention for neural tube defects in coal mining cites in China: A temporal and spatial analysis," *Int. Health*, vol. 13, no. 2, pp. 161–169, 2021, doi: 10.1093/inthealth/ihaa035.
- [8] G. Rashed, K. Mohamed, and R. Kimutis, "A coal rib monitoring study in a room-and-pillar retreat mine," *Int. J. Min. Sci. Technol.*, vol. 31, no. 1, pp. 127–135, 2021, doi: 10.1016/j.ijmst.2020.10.001.
- [9] D. Szurgacz, M. Tutak, J. Brodny, L. Sobik, and O. Zhironkina, "The method of combating coal spontaneous combustion hazard in goafs-a case study," *Energies*, vol. 13, no. 17, 2020, doi: 10.3390/en13174538.
- [10] M. E. Payne, H. F. Chapman, J. Cumming, and F. D. L. Leusch, "In vitro cytotoxicity assessment of a hydraulic fracturing fluid," *Environ. Chem.*, vol. 12, no. 3, pp. 286–292, 2015, doi: 10.1071/EN14010.
- [11] G. Žibret and V. Kopačková, "Comparison of two methods for indirect measurement of atmospheric dust deposition: Street-dust composition and vegetation-health status derived from hyperspectral image data," *Ambio*, vol. 48, no. 4, pp. 423–435, 2019, doi: 10.1007/s13280-018-1093-0.
- [12] M. Tan, X. Zhou, G. Li, M. Ge, Z. Chen, and J. Qu, "Soil characteristics and microbial responses in post-mine reclamation areas in a typical resource-based city, China," *J. Environ. Eng. Landsc. Manag.*, vol. 29, no. 3, pp. 273–286, 2021, doi: 10.3846/jeelm.2021.15138.
- [13] S. Mukhopadhyay, S. K. Maiti, and R. E. Masto, "Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study," *Ecol. Eng.*, vol. 71, pp. 10–20, 2014, doi: 10.1016/j.ecoleng.2014.07.001.
- [14] J. H. Park, M. Edraki, D. Mulligan, and H. S. Jang, "The application of coal combustion by-products in mine site rehabilitation," *Journal of Cleaner Production*, vol. 84, no. 1. pp. 761–772, 2014. doi: 10.1016/j.jclepro.2014.01.049.
- [15] C. E. Zipper and J. Skousen, "Coal's legacy in Appalachia: Lands, waters, and people," *Extractive Industries and Society*, vol. 8, no. 4. 2021. doi: 10.1016/j.exis.2021.100990.
- [16] V. Masindi, E. Chatzisymeon, I. Kortidis, and S. Foteinis, "Assessing the sustainability of acid mine drainage (AMD) treatment in South Africa," *Sci. Total Environ.*, vol. 635, pp. 793–802, 2018, doi: 10.1016/j.scitotenv.2018.04.108.
- [17] P. Trechera *et al.*, "Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China," *Int. J. Coal Geol.*, vol. 235, p. 67, 2021, doi: 10.1016/j.coal.2021.103677.
- [18] C. Li, J. Zhang, J. Han, and B. Yao, "A numerical solution to the effects of surface roughness on water—coal contact angle," *Sci. Rep.*, vol. 11, no. 1, p. 45, 2021, doi: 10.1038/s41598-020-80729-9.
- [19] T. Liu and S. Liu, "The impacts of coal dust on miners' health: A review," *Environmental Research*, vol. 190. p. 12, 2020. doi: 10.1016/j.envres.2020.109849.
- [20] S. R. Goldyn, R. Condos, and W. N. Rom, "The burden of exposure-related diffuse lung disease," *Seminars in Respiratory and Critical Care Medicine*, vol. 29, no. 6. pp. 591–602, 2008. doi: 10.1055/s-0028-1101269.
- [21] S. J. Page and J. C. Volkwein, "A revised conversion factor relating respirable dust concentrations measured by 10 mm Dorr-Oliver nylon cyclones operated at 1.7 and 2.0 L min -1," *J. Environ. Monit.*, vol. 11, no. 3, pp. 684–689, 2009, doi: 10.1039/b817922k.
- [22] M. D. Mallet, "Meteorological normalisation of PM10 using machine learning reveals distinct increases of nearby source emissions in the Australian mining town of Moranbah," *Atmos. Pollut. Res.*, vol. 12, no. 1, pp. 23–35, 2021, doi: 10.1016/j.apr.2020.08.001.
- [23] Y. Xie, W. Cheng, H. Yu, and B. Sun, "Microscale dispersion behaviors of dust particles during coal cutting at large-height mining face," *Environ. Sci. Pollut. Res.*, vol. 25, no. 27, pp. 27141–27154, 2018, doi: 10.1007/s11356-018-2735-2.

- [24] Y. A. Savchenko *et al.*, "Chromosomal aberrations in coal mine workers with lung diseases," *Meditsina Tr. I Promyshlennaya Ekol.*, vol. 60, no. 4, pp. 226–231, 2020, doi: 10.31089/1026-9428-2020-60-4-226-231.
- [25] D. N. Devi, S. Zahoor-Ul-Huq, and K. I. Ahamed, "Real time monitoring of integrated coalmine mashup middleware system using WSN," *Int. J. Recent Technol. Eng.*, vol. 7, no. 6, pp. 276–278, 2019.
- [26] Agrawal, S. A., Umbarkar, A. M., Sherie, N. P., Dharme, A. M., & Dhabliya, D. (2021). Statistical study of mechanical properties for corn fiber with reinforced of polypropylene fiber matrix composite. Materials Today: Proceedings, doi:10.1016/j.matpr.2020.12.1072
- [27] Anupong, W., Azhagumurugan, R., Sahay, K. B., Dhabliya, D., Kumar, R., & Vijendra Babu, D. (2022). Towards a high precision in AMI-based smart meters and new technologies in the smart grid. Sustainable Computing: Informatics and Systems, 35 doi:10.1016/j.suscom.2022.100690