Consumer Acceptance Of The Use Of Artificial Intelligence In Online Food Delivery Service: Evidence From Delhi/Ncr

Ms. Yashika Verma

Research Scholar, SSBS, Sharda University, Greater Noida, India,

Dr. K.R. Gola

Associate Professor SSBS, Sharda University, Greater Noida, India.

Prof. Pradeep Kumar Aggarwa

Controller of Examination, Shri Lal Bahadur Shastri National Sanskrit University.

Abstract

Artificial Intelligence (AI) has emerged as a disruptive innovation, accelerating digital transformation and reshaping food ordering and delivery systems. This study explores the predictors of consumers' intention to adopt AI-driven online food delivery services (AIOFDS), extending the Technology Readiness and Acceptance Model by incorporating AI-specific constructs such as customization and interactivity. AI-powered features—chatbots, recommendation engines, image recognition, and personalized checkout—enhance user experiences and streamline processes. Data were collected from 587 respondents in Delhi/NCR through convenient sampling (Jan–Mar 2024) and analyzed using Partial Least Squares Structural Equation Modelling (PLS-SEM) to assess measurement and structural models. Findings indicate that insecurity negatively influences perceived usefulness, while discomfort reduces ordering intention. Conversely, innovativeness, perceived ease of use, perceived usefulness, customization, and interactivity significantly predict ordering intention. The study provides both academic and managerial implications, highlighting how businesses can leverage AI-based features to design effective strategies, improve customer engagement, and enhance competitiveness in the retail and technology-driven marketplace.

Keywords: TRAM, PLS-SEM, customization, interactivity, Vedic Mathematics, Artificial Intelligence Based Online food delivery service.

1. Introduction

AI is a crucial innovation that has increased digital transformation across industries, particularly over the past decade (Dwivedi et al., 2019). In today's digital era, technological advancements have significantly transformed the business landscape, with artificial intelligence (AI) playing a key role in this shift (C. Wang et al., 2023). AI enhances consumer engagement by creating interactive experiences, increasing their willingness to share personal information (Kronemann et al., 2023). AI technologies have accelerated the shift from conventional ordering over the phone toadvanced "online platforms", transforming the waymeal business involves interactions between restaurants, customers, and delivery services(Can Sayginer, 2024). Application in the food industry plays significant role in enhancing customer convenience and company growth. AI-driven customer solutions include chatbots, recommendation engine, image recognition, personalized experiences, and streamlined checkout processes (D. Lim et al., 2023). Online food delivery services have particularly benefited from AI, that allowing them to operate more efficiently and methodically (Mayank Goyal et al., 2023). AI revolutionsed the industry by offering tailored suggestion based on order history, browsing behavior, and dietary requirement. AI-driven

search features that make it easier to find particular meal/dish, also it helps to adjusts pricing strategy in real time based on demand, weather, and peak hours, ensuring fair pricing for both customers and restaurants. Al also optimizes delivery routes by analyzing traffic patterns, delivery distances, and driver availability, which leads to faster and fresher deliveries. The Indian online food delivery market is expected to bring revenue of "\$43.78 billion in 2024", with an anticipated "annual growth rate (CAGR 2024–2029) of 15.98%" (Statista, 2024).

Majority of current research provides generalized observations without taking into account the effects of AI-driven elements like real-time surveillance, tailored feedbacks, &"automated customer interaction". The research examines the shifts in "AI-driven" online ways for delivering meals in the developing "market". While numerous studies have examined AI's role in the e-commerce industry, primarily from standpoint of technology experts ("Liu et al., 2022"), research specifically focused on AI based online food delivery applications remains limited. Experts in AI adoption (Belanche et al., 2020) have identified "Technology Readiness Index (TRI)" as relevant yet underutilized structure in this domain. To bridgethis gap in the study, this study integrates "TRI" with "Technology Acceptance Model (TAM)"in order to investigate intents of the clientregarding the use of AI-based food delivery applications. "The Technology Readiness and Acceptance Model" is employed to develop a conceptual framework that AI-specific constructs in order to answer the research question. This framework is empirically tested using survey data collected from 587 customers. The study begins with a literature review to establish the theoretical groundwork, followed by hypothesis development. After that, it goes under details for research methodology, including sampling techniques, data collection method, and the design of the research instrument. The findings are analyzed and presented, leading to a discussion on managerial and theoretical implications. The final section addresses the study's limitations, outlines future research directions, and finally, study end with the discussion, conclusion& contribution of the study. The primary aim of this study is to assess how AI has enhanced online food delivery applications and to identify key features that can further improve their effectiveness.

2. Artificial intelligence in Online food delivery application

Online food delivery services (OFDS) are online platforms that allow customers to order meals through mobile application from partner restaurants (Ray et al., 2019). Personalized is one of the most significant uses of AI in food delivery. To provide personalization recommendation, AI algorithms analyze user data, such as browsing history, purchasing behavior, and preferences, This personalization feature in OFD platform not only improve customer satisfaction and retention but also boost sales (Chen & Biswas, 2021). AI also leverages location-based recommendations to recommend nearby restaurants and popular cuisines, helping users to find new dining options and increasing engagement with food delivery apps. Furthermore, AI improves user experiences through chatbots and voice assistants, which assist with customer enquiries, navigation, and order placement, providing instant support (Leung & Wen, 2020). As Infolks (2021) points out, visual recognition technology makes ordering even easier by allowing user to get recommendation on the uploaded images of dishes over website/app that make user experience more interactive and convenient

3. Theoretical framework and hypotheses development

Technology readiness and adoption are crucial research topics in today's technology-advance landscape. The Technology Acceptance Model (TAM) (Davis, 1989) is widely used to

examine technology adoption, while Technology Readiness (TR) represents a customer's willingness to embrace tech"(Parasuraman, 2000)".

I. "TR (Technology Readiness)"

Technology Readiness (TR) refers to a person'sinclination to embrace &make use of new technologyto achieve personal and professional goals. It can be understood as "an overall state of mind shaped by a combination of mental enablers and inhibitors that collectively influence a person's willingness to adopt new technologies" (Parasuraman, 2000, p. 308). The Technology Readiness Index (TRI) comprises four key dimensions, categorized into two groups:

II. TAM (Technology Adoption Model)

Technology Acceptance Model (TAM) is popular and well recognized framework for studying consumer intention to use new technology. According to Davis (1989), a user's intention to adopt two important things influence technology: Perceived Utility (PU).

Research has demonstrated that TRAM enhances the applicability of both models in marketing contexts. The TRAM model has been widely applied in studies on new technology adoption across various domains, including; Mobile payments (Martens et al., 2017; Shin & Lee, 2014); Social media adoption (Jin, 2013); Digital services in B2B healthcare (Hallikainen & Laukkanen, 2016); Mobile electronic medical records (Kuo, Kiu, & Chen-Chuang, 2013); E-service systems (Lin et al., 2007); Augmented Reality Open banking ("Sivathanu, 2019"); (AR) in tourism ("Chung et al., 2015"); Services for self-checkout in supermarkets that sell groceries in retail ("Mukerjee et al., 2019").

Context-Specific Variables

Customization (CST)

Customization (CST) refers to a retailer's ability to provide transactional customization to consumers (Srinivasan et al., 2002). In the context of e-commerce, CST is defined as a website's ability to adapt to customer needs automatically or allow user to modify it to suit their preferences (Lee &Benbasat, 2004). As per the study of (Piller & Müller, 2004), many customers using online food delivery apps prefer to customize their meals based on personal tastes rather than choosing standardized optionsCST allow user to customize food with ease using AI-powered technology (Pierdicca et al., 2015; Kahn et al., 2018; Chopra, 2019).is recognized as a major advantage of e-commerce and mobile commerce (m-commerce) (Morosan, 2014; Chong et al., 2012). AI-driven online food delivery services (AIOFDS) increase user satisfaction by offering customization meal suggestions, ensuring a more personalized and engaging ordering experience.

• Interactivity (INT)

Interactivity (INY) is defined as "the extent to which users can participate in modifying the form and content of a mediated environment in real-time". The degree of involvement customer feels when they interact with the seller is reflects how customer perceive involved.(Thamizhvanan, 2013). AI Based Online Food Delivery Service (AIOFDS) technologies improves interactivity by providing customers with real-time instruction on product locations, usage, discounts, pricing, and availability via mobile applications¬ifications ("Kimberly, 2016"). AI-driven Online food delivery service. Consequently, the highly interactive nature of AIOFDS is expected to significantly influence consumer shopping behavior, making AI-driven. Several researchers have explored AI-based

online food delivery services. Sayginer et al. (2024) examined Food distribution systems powered by AI during and after COVID-19, Dr. Rashmi et al. (2022) studied AI in online food delivery, and Nunkoo et al. (2024) focused on AI-driven drone food delivery services. However, we utilized the TRAM model to predict consumer intention toward AI-based online food delivery services in India, an area that remains largely unexplored.

4. Hypotheses Development

This study develops a conceptual model by integrating the Technology Readiness and Acceptance Model (TRAM) with two variables unique to the context toanalyze people intentions to order from AIOFDS in India. Following the TRAM framework, the research explores how OPT, INNOV, DIF, and INS impact PU and PEOU, and subsequently examines the effect of PEOU on PU. Additionally, the study investigates the influence of PEOU, PU, CST, and INY on shopping intention at AIOFDS. The proposed theoretical model as depicted in Image.

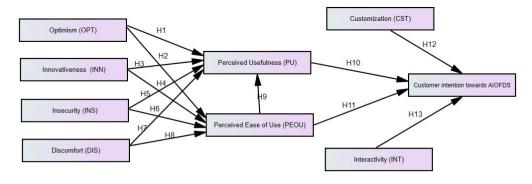


Figure 1. Conceptual Model of Customer Intention Towards AIOFDS

Optimism and Perceived Usefulness

Technological optimism is known as a positive view of technology and a belief that it offers people increased control, flexibility, and efficiency in their lives ("Parasuraman & Colby, 2015, p. 60"). This idea also applies to artificial intelligence "(AI)", since individuals can view it as either "heaven" or "hell" ("Kaplan & Haenlein, 2020"). Consequently, optimistic people are more likely to embrace new technologies (Chen & Lin, 2018). Lundberg's (2017) study on the self-service technology adoption, discovered that perceived usefulness is strongly influenced by optimism Thus, we propose the following hypothesis.

H1: Optimism positively affects the perceived usefulness of ordering food at AIOFDS.

Optimism and Perceived ease of use

Optimism (OPT) reflects an individual's positive outlook on technology, believing that it enhances adaptability, efficiency and authority. It represents a person's inclination to embrace new technologyas they arrive in the market. Studies indicate that OPT influences "perceived ease of use (PEOU)", a study involving 123 employees in Norway found that OPT significantly influenced PEOU in the adoption of a system for electronic health records (Godoe & Johansen, 2012).. Thus, we propose the following hypothesis.

H2: Optimisim positively affects the Perceived ease of use of ordering food at AIPARS.

Innovativeness and Perceived Usefulness

Innovativeness (INN) refers to the process of developing new technologies or enhancing existing ones to meet evolving consumer needs (Rahmania et al., 2023). Research on technology adoption presents mixed findings regarding the relationship between INN and perceived usefulness (PU). Some studies, such as those on mobile payment adoption and health apps, found no significant association between INN and PU. However, other research on new technology acceptance confirms that INN positively influences PU (Kim & Chiu, 2019). Thus, following hypothesis is put forward.

H3: INNOV positively affects PU of Ordering food at AIOFDS.

Innovativeness and perceived ease of use

Innovativeness (INN) has been shown to positively influence perceived ease of use (PEOU) in consumer shopping intentions, particularly in retail stores that integrate artificial intelligence (AI) (Pillai et al., 2020). Additionally, research on AI-based recruitment systems has established a positive relationship between INN and perceived usefulness (PU) (Lee et al., 2021). Thus, the following hypothesis is proposed.

H4: INNOV positively affects PEOU of ordering activity at AIOFDS

Discomfort and Perceived Usefulness

Discomfort (DIF) is defined as the technological fear and apprehension consumers experience toward new technology. It reflects the negative emotions and resistance individuals may feel when confronted with emerging technologies (Cambre & Cook, 2005)..In the case of AI-powered online food delivery services (AIOFDS), automation plays a crucial role in enhancing user convenience by providing features such as meal and restaurant discovery, online images, order tracking, and location accessibility. Thus, we put forward the following hypothesis.

H5: DIF negatively affects PU to ordering activity at AIOFDS.

Discomfort and Perceived ease of use

Discomfort (DIF), where people experience to have discomfort, are less likely to embrace and use new technology, because they have negative opinion on them (Blut & Wang, 2020). In the context of AI-powered online food delivery services (AIOFDS), advanced features such as food ordering, restaurant search, availability tracking, and real-time order monitoring may overwhelm some consumers, making them perceive the system as complex and difficult to navigate. Thus, we put forward the following hypothesis.

H6: DIF negatively affects PEOU to ordering activity at AIOFDS.

Insecurity and Perceived Usefulness

Consumers who experience insecurity (INS) tend to be less reliant on technology, fearing that it may fail at critical moments, INS is recognized as a key factor contributing to lower technology adoption (Tsikriktsis, 2004). Existing research indicates that INS adversely affects "perceived usefulness (PU)" of novel tech. However, some research suggests no significant relationship between INS and PU.SinceAIOFDS is entirely technology-driven, consumers may feel uncertain or skeptical about its reliability, which could hinder their acceptance of the system. Therefore, a hypothesis is proposed based on this premise.

H7: INS negatively affects PU to ordering activity at AIOFDS.

Insecurity and Perceived ease of use

Insecurity (INS) reflects, people lack of confidence in embracing new technology. It has been demonstrated to impede technology adoption (Parasuraman & Colby, 2001) and act as a negative and deterrent factor for technological preparedness ("Kuo et al., 2013"). According to studies, on the embracing novel tech, suggests that INS negatively impacts perceived ease of use (PEOU) (Kim & Chiu, 2019; Martens et al., 2017). However, some research suggests that no significant relationship between INS and PEOU. When utilizing technology-driven service, some consumers lack confidence may experience uncertainty and hesitant (Godoe& Johansen, 2012 Thus, a hypothesis is formulated accordingly.

H8: INS negatively affects PEOU to ordering activity at AIOFDS.

Perceived ease of use and Perceived Usefulness

Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) are key determinants of technology adoption. Research on new technology adoption has consistently examined the relationship between PEOU and PU. However, some studies, such as the acceptance of AR applications, have found no significant relationship between PEOU and PU (Rese et al., 2017). As AIOFDS is a fully automated, AI-powered store, its effortless ordering process and AI-driven assistance are expected to enhance its perceived usefulness. Therefore, the following examination is proposed.

H9: PEOU positively influences the PU of ordering activities at AIOFDS.

Perceived ease of use and Intention to use

Customer intention to order food at AIOFDS reflects the subjective likelihood of a consumer's involvement in a specific shopping behavior. Perceived Ease of Use (PEOU) is a key factor in technology acceptance (Davis, 1989). Research on M-commerce adoption has shown that PEOU influences the intention to adopt. Studies in technology acceptance also indicate that PEOU affects usage intention. Thus, the following theory is put forth.

H10: PEOU positively influences the Customer intention to online ordering at AIOFDS.

Perceived Usefulness and Intention to use

When customers perceive that technology enhances their performance and efficiency, they are more likely to accept and adopt it (Davis, 1989). Perceived Usefulness (PU) has been shown to influence e-shopping usage and mobile shopping behavior. Additionally, PU drives the adoption of smart products (Mani &Chouk, 2018). Studies on new technology adoption further confirm the impact of PU on behavioral intention. Consequently, consumers may perceive shopping at AIOFDS as highly useful, leading to the following hypothesis.

H11: PU positively influences the customer intention to online ordering at AIOFDS.

Customization and Intention to use

Customization (CST) refers to the extent which a companytailors its services to meet diverserequirements of clients. This is a key determinant of customer behavior when purchasing online, m-commerce, &retail malls. At AIOFDS, AI-powered mobile apps and digital signboards provide personalized food recommendations and exclusive deals, which may shape customers' intention to order online. Consequently, the following theory is put forth.

H12: CST positively influences the customer intention to online ordering at AIOFDS.

Interactivity and Intention to use

Interactivity (INT) plays a crucial role in facilitating customer-business interactions (Srinivasan et al., 2002; Ballantine, 2005) and serves as a key predictor of consumer behavior in smart retail environments. At AIOFDS, AI-powered technology fosters a highly interactive experience by assisting customers in finding restaurants, checking availability, tracking orders, and making automated payments. Based on this, the following hypothesis is suggested. *H13: INY positively influences the customer intention at AIOFDS*.

5. Method of Research

This section explains the survey tool and the data collection procedure. Primary studies are deployed in this study.

5.1 Research Survey Instrument Design:

This research employs a qualitative analysis approach, drawing insights from historical studies, literature, and documented evidence. To examine customer readiness and acceptance of technology will deploy quantative analysis, measurement scale was created using theliterature on "Technology Readiness" (TR) &technology adoption (Parasuraman, 2000). The scales used for INT ("Srinivasan et al., 2002") & CST ("Shao 2009"; "Kalinic & Marinkovic, 2016") were modified for this study. Before gathering of data, six subject-matter experts in AI from academia were consulted to review the interview questionnaire. Using a five-point Likert scale, measure latent variables that have been operationalized. To assess data reliability and internal consistency, Cronbach's alpha was applied. Following satisfactory pilot study results, primary data collection commenced. The constructs that have been operationalized are detailed in "Table I".

Table I. "Measurement Model Summary"

Constructs	Items	Indicators	Sources
Optimism (OPT)	OPT1	New technologies like AIOFDS contribute to a better quality of life.	Colby (2015) Parasuraman
	OPT2	Technology like AIOFDS gives me more freedom to ordering food.	
	OPT3	Technology like AIOFDS makes me more efficient in my ordering food.	
	OPT4	I like the idea of using new technology like AIOFDS in ordering food.	
Innovativeness(INNOV)	INNOV1	In general, I am among the first in my circle of	

		0:1::	(2000)
		friends, to acquire	(2000)
		new technology like AIOFDS when	
	INNOV2	it appears. I can usually figure	
	INNOVZ	out new high-tech	
		in using online	
		food ordering like	
		AIOFDS without	
		help from others.	
	INNOV3	I keep up with the	
		latest AIOFDS	
		technological	
		developments in	
		my areas of	
		interest	
	INNOV4	I prefer to use the	
		most advanced	
		technology like	
		AIOFDS.	
Insecurity(INS)	INS1	Excessive use of	
		technology like	\ /
		AIOFDS distracts	
		people to a point	(2000)
	DICO	that is harmful.	
	INS2	I am worried that	
		while ordering food at AIOFDS,	
		Someone will	
		misuse my data	
		which is provided	
		by me while	
		ordering.	
	INS3	When I have to	
		only order at	
		AIOFDS; I do not	
		feel confident.	
	INS4	I do not consider it	
		safe to provide	
		personal	
		information over	
		the technology	
		based app like	
	DIG 5	AIOFDS.	_
	INS5	Any online	
		ordering service,	
		like AIOFDS business	
	1	nucea nilcinece	i l

		transaction I do	
		electronically	
		should be	
		confirmed later	
		with a separate	
		communication	
Discomfort	DIS1	I feel that new	Parasuraman and
		online technology	Colby (2015)
		in ordering food	
		and AIOFDS is not	
		designed properly	(=***)
		which can be	
		understood by any	
	DIG2	individual person.	_
	DIS2	New technologies	
		like AIOFDS, have	
		health or safety	
		risks that are not	
		discovered until	
		after people have	
		used them	
	DIS3	There should be	
		caution in	
		replacing	
		important people	
		tasks with	
		technology	
		because new	
		technology like	
		AIOFDS can break	
		down or get	
	DIGA	disconnected	
	DIS4	I feel that	
		Technology used	
		at AIOFDS would	
		always fail at the	
		worst expected	
		time.	
Perceived	PU1	Online ordering	Davis (1989)
Usefulness(PU)		food technology	
		like AIOFDS	
		helps me to learn	
		more efficiently	
	PU2	Online ordering	†
	102	food technology	
		like AIOFDS	
		improves my	
		academic	

	DLI2	performance	
	PU3	Online ordering	
		food technology	
		like AIOFDS	
		makes my learning	
		more effective.	
	PU4	Online ordering	
		food technology	
		like AIOFDS	
		makes it easier to	
		learn	
	PU5	Overall, Online	
		ordering food	
		technology like	
		AIOFDS is	
		beneficial for my	
		learning	
Perceived ease of	PEOU1	Learning to use	Davis (1989)
use(PEOU)		Online ordering	24115 (1707)
use(1 EOO)		food technology	
		like AIOFDS is	
		easy for me	
	PEOU2	It is easy to get	
	FEOUZ	food service from	
		online ordering	
		food technology	
	DEOLI2	like AIOFDS	
	PEOU3	The process of	
		using Online	
		ordering food	
		technology like	
		AIOFDS is clear	
		and understandable	
	PEOU4	It is easy for me to	
		become skilful at	
		using Online	
		ordering food	
		technology like	
		AIOFDS	
	PEOU5	Overall, I find	
		Online ordering	
		food technology	
		like AIOFDS is	
		easy to use	
Customization (CST)	CST1	AIOFDS would	(Kalinic and
` ,		provide purchase	Marinkovic, 2016;
		suggestions which	Shao et al., 2009)
		suit my	-,)
	<u> </u>	1 222	

		raquiraments		
	CCT2	requirements.		
	CST2	AIOFDS would		
		enable me to order		
		food that are		
		suitable for me.		
	CST3	The promotions		
		and advertisement		
		that AIOFDS		
		provide me are		
		perfectly suitable		
		as per my food		
		ordering		
		requirement.		
	CST4	AIOFDS would		
		make me		
		experience like a		
		unique customer.		
	CST5	I am confident that		
		AIOFDS would be		
		customized as per		
Internativity (INV)	INT1	my requirement. AIOFDS would	(Dollarding 2005	
Interactivity (INY)	11N 1 1		/ / /	
		enable me to see	Srinivasan et al.,	
		the food from	2002)	
	D. Ima	different angles.		
	INT2	AIOFDS would		
		have search tools		
		that enable me to		
		locate food.		
	INT3	AIOFDS have		
		tools that make		
		food comparisons		
		easy.		
	INT4	Shopping at		
		AIOFDS is very		
		engaging.		
	INT5	Shopping at		
		AIOFDS is very		
		dynamic.		
Customer intention	OI1	I will use Online	Davis(1989)	
towards AIOFDS		ordering food		
		technology like		
		AIOFDS on a		
		regular basis in the		
		future		
	OI2		-	
	012	I will frequently		
		use Online		
		ordering food		

	technology like	
	AIOFDS service	
	in future.	
OI3	I intend to use	
	Online ordering	
	food technology	
	like AIOFDS to	
	assist my learning	
OI4	Assuming I had	
	access to Online	
	ordering food	
	technology like	
	AIOFDS, I would	
	use it	

5.2 Sampling and Data Collection

For primary data collection, a structured questionnaire (Table I) was administered to respondents. The survey was conducted in Delhi/NCR, recognized as a prominent food hub in India. The target participants were individuals who actively used online food delivery services. A convenience sampling method was employed to survey consumers who used online food delivery services in Delhi/NCR. To minimize bias, data collection took place at various times and on different days. The process spanned three months, resulting in 587 fully completed and valid questionnaires for analysis.

Four sections make up the questionnaire. Section 1 collected the respondents' demographic data, including name, gender, age, level of education, occupation &frequency of using online food delivery app. Section 2 includes five points. Likert scale inquiries to gauge thebehavioural intention towards using online food delivery service. By employing a identifies quantitative method, this examination the elements that theimplementation of artificial intelligence technology in digitalfood delivery service in Delhi/NCR. Table 1 displays items and constructs modified to assess theintention of consumer. The operationalized constructs are detailed in Table II. Respondents were contacted via phone and email &made aware ofto completequestionnaire. The information gathered was analyzed utilizing (SPSS) and Smart-PLS.

6. Results

6.1 Data Analysis and Results

Table II presents the demographic insights of the respondents.

Table II. Demographic profile of the respondents

Demographic	Characteristics	Frequency	Percentage
Gender	Male	363	61.8%
	Female	224	38.2%
Age	Below 18 years	108	18.39%
	18-24years 146	146	24.87%
	25-34 years	208	35.43%
	35-44 years	64	10.90%
	45-54 years	43	0.73%
	Above 55 years	18	0.30%

	0 1 01 1	5 2	0.000/
Education Level	Secondary School	53	0.90%
	Sr. Secondary	27	0.45%
	School		
	Under-Graduate	23	0.39%
	Graduate	251	42.7%
	Post-Graduate	228	38.8%
	Ph.D	5	0.08%
Personal Income in INR(Monthly)	Below 10,000	121	20.61%
	10,000-50,000	63	10.73%
	50,000-1,00,000	81	13.79%
	1,00,000-1,50,000	214	36.45%
	1,50,000 and above	108	18.39%
Frequency of	Daily	103	17.54%
Using Online Food Delivery	Weekly	273	46.50%
Services	Fortnighlty	118	20.10%
	Monthly	93	15.84%
Prior experience	More than 6	390	66.4%
of using	months	197	33.56%
technology for	More than 1 year		
ordering food.			

6.2 "Reliability and validity analysis of the items"

A reliability analysis was carried out to evaluate the items of each construct for internal validity and consistency. All items' Cronbach's α was tenable because it was more than 0.7, in social science research, this is advised ("Nunnally, 1978"). Composite reliability, also known as construct reliability, is a metric for internal consistency in scale items, much like Cronbach's alpha (Netemeyer et al., 2003). It's an "indicator of the shared variance among the observed variables used as an indicator of a latent construct" ("Fornell and Larcker, 1981").

6.3 "Hypothesis Testing"

Table III. Validity and Reliability for all Constructs.

Measurement Items	Loadings	A	CR	AVE
Optimism	0.916	0.936	0.955	0.840
OPT1	0.888			
OPT2	0.937			
OPT3	0.896			
OPT4	0.944			
Innovativeness	0.902	0.925	0.946	0.816

				·· ·· ·····
INNOV1	0.870			
INNOV2	0.938			
INNOV3	0.865			
INNOV4	0.937			
Insecurity	0.993	0.995	0.995	0.978
INS1	0.994			
INS2	0.894			
INS3	0.990			
INS4	0.982			
INS5	0.985			
Discomfort	0.997	0.998	0.998	0.994
DIS1	0.997			
DIS2	0.996			
DIS3	0.997			
DIS4	0.998			
Perceived Usefulness	0.705	0.858	0.904	0.703
PU1	0.788	0.000	0.70.	0.700
PU2	0.177			
PU3	0.881			
PU4	0.783			
PU5	0.899			
103	0.077			
Perceived Ease of Use	0.845	0.902	0.926	0.715
PEOUI	0.799			
PEOU2	0.896			
PEOU3	0.835			
PEOU4	0.888			
PEOU5	0.807			
12333				
			ļ	
		0.00-	0.05-	0.041
Customization	0.807	0.935	0.955	0.841
CST1	0.948			
CST2	0.805			
CST3				
CST4	0.953			
;	0.381			
CST5	0.381 0.953			
CST5 Interactivity	0.381 0.953 0.850	0.907	0.929	0.724
CST5 Interactivity INT1	0.381 0.953 0.850 0.818	0.907	0.929	0.724
CST5 Interactivity INT1 INT2	0.381 0.953 0.850 0.818 0.885	0.907	0.929	0.724
CST5 Interactivity INT1 INT2 INT3	0.381 0.953 0.850 0.818 0.885 0.831	0.907	0.929	0.724
CST5 Interactivity INT1 INT2	0.381 0.953 0.850 0.818 0.885	0.907	0.929	0.724

Ordering Intention	0.778	0.791	0.863	0.616
OIN1	0.840			
OIN2	0.616			
OIN3	0.884			
OIN4	0.774			

6.4 "PLS-SEM"

PLS-SEM is employed in studies when the research purpose is the extension of the present theory (Hair et al., 2011). PLS-SEM has also been employed in several technology adoption studies for online behavior. Hence, the data analysis was done employing the Smart PLS 4.0.All Outer loadings value of items which is above the 0.7 except PU2 (0.177) and CST4 (0.381) which is below the threshold value, so we remove these two item PU2 and CST4 for analysis. The items displayed high internal consistency, with Cronbach's alpha values greater than 0.7. As shown in Table II, the CR values further validate strong reliability and internal consistency, with all item loadings surpassing the 0.6 threshold. Additionally, the AVE values exceeded the 0.5 benchmark, confirming the convergent validity of all constructs.

The discriminant validity of the constructs is established by comparing their intercorrelations using the off-diagonal values of the AVE, as shown in "Table IV".

Table IV. Discriminant Validity

Table IV.	1	1		1	1	1	1	1	
Researc	OIN	CST	DIF	INNO	INS	INT	OP	PE	PU
h				V			T	OU	
Constru									
ct									
OIN	0.785								
CST	0.749	0.917							
DIF	0.01	0.07	0.997						
INNOV	0.573	0.739	-0.054	0.903					
INS	-0.115	-0.073	-0.005	-0.077	0.989				
INT	0.636	0.628	-0.096	0.637	-0.158	0.851			
OPT	0.699	0.865	0.038	0.706	-0.097	0.684	0.91		
							7		
PEOU	0.719	0.823	0.078	0.646	-0.07	0.584	0.80	0.87	
							6	6	
PU	0.723	0.878	0.021	0.725	-0.107	0.648	0.80	0.84	0.839
							4	4	

Table VI: The result of VIF, R², F², and O²

Table VI. The result of VII, K, F, and Q								
	VIF		R ²	\mathbf{F}^2			Q^2	
	OIN	PEOU	PU		OIN	PEOU	PU	
OIN				0.752				0.385
CST	8.221				0.074			
DIF		1.015	1.026			0.011	0.002	
INNOV		2.018	2.098			0.039	0.125	
INS		1.01	1.01			0.000	0.006	
INT	1.78				0.088			

OPT		2.022			0.705	0.042	
PEOU	7.759		0.664	0.228		0.666	0.649
PU	5.375		0.817	0.158			0.685

Statistics on multi-collinearity reveal how the independent variables are correlated with one another. All of the constructs have VIF values below 10, as Table 6 demonstrates(Robert, 2007), showing that the model has no multi-collinearity problems. OPT (0.705) has largest effect size on PEOU & PEOU (0.666) has largest effect size on PU with f² value. PEOU (0.228) & PU (0.158) has medium effect size on OIN. finally, DIF, INNOV, INS, has small effect on PEOU with f² value, respectively are; 0.011,0.039. 0.000. INT (0.088) has smallest effect size on OIN. DIF, INNOV, INS, OPT has small effect size on PU; 0.002, 0.125. 0.006, 0.042 respectively. Table 8's valid path coefficient has a p-value of less than 0.05.

A model's predictive usefulness is determined by its Q square value. A model's Q square value needs to be higher than zero for a quantitative analysis based on primary data. Additionally, Table 7 showed that every Q2 value is greater than 0(Q² OIN= 0.385, Q² PEOU=0.649; &Q² PU=0.685).

A model's R square indicates the amount of variance in the dependent variabledue to the independent variables which are present in the model [M.lewis,2003]. Table 8 shows that The OIN, PEOU, and PU have been explained by 75.2%, 66.4%, and 81.7% by the change of independent variables.

6.4.2 Structural Model

Path analysis was carried out following validation of the measurement model's validity and reliabilityusing structural framework to evaluate relationships between constructs, as illustrated Figure II. shows the route coefficients as well astheir important levels are detailed in Table V.

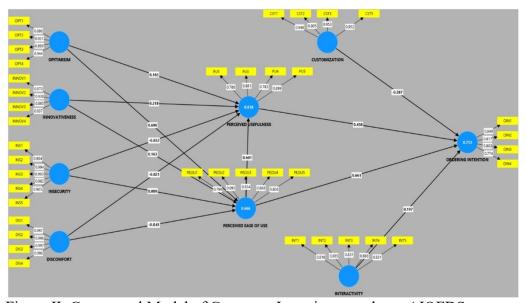


Figure II. Conceptual Model of Customer Intention to order at AIOFDS

Table VII. Path Coefficients

Hypothesis	Path Coefficients Path	Path Coefficient	T Statistics	P value	Decision
H1	Optimisim-> Perceived Ease Of Use	0.163	10.997	0.000	Supported
Н2	Optimisim-> Perceived Usefulness	0.690	2.170	0.003	Supported
Н3	Innovativeness-> Perceived Ease Of Use	0.163	2.190	0.029	Supported
Н4	Innovativeness-> Perceived Usefulness	0.218	5.139	0.000	Supported
Н5	Insecurity -> Perceived Ease Of Use	0.009	0.251	0.802	Not supported
Н6	Insecurity -> Perceived Usefulness	-0.032	2.022	0.043	Supported
Н7	Discomfort-> Perceived Ease Of Use	-0.041	1.214	0.197	Not Supported
Н8	Discomfort-> Perceived Usefulness	-0.021	1.334	0.182	Not Supported
Н9	Customization- >Ordering Intention Towards AIOFDS	0.145	2.675	0.007	Supported
H10	Interactivity-> Ordering Intention Towards AIOFDS	0.058	3.403	0.001	Supported
H11	Perceived Usefulness -> Customer Intention Towards AIOFDS	0.120	3.822	0.000	Supported
H12	Perceived Ease Of Use - >Perceived Usefulness	0.085	7.075	0.000	Supported

H13	Perceived Ease	0.148	4.461	0.000	Supported
	Of Use ->				
	Customer				
	Intention				
	Towards				
	AIOFDS				

The findings reveal that optimism (OPT) significantly affects perceived utility (PU) $(\beta=0.75, p<0.01)$ &"perceived ease of use (PEOU)" $(\beta=0.063, p<0.05)$ in the context of AIOFDS, contradicting previous research by Kumar and Mukherjee (2013). Customers exhibit optimism regarding the ease of use and usefulness of AIOFDS, as they are already familiar with using technology for online food ordering. Innovation (INN) favourably affectsboth "PEOU" (β =0.074, p<0.05) & "PU" (β =0.042, p<0.05), indicating that customers with a creative perspective AIOFDS tech as both user-friendly and beneficial for ordering food. However, discomfort (DIF) does not significantly impact PEOU (β =-0.021, ns) or PU (β =-0.041, ns), aligning with studies on self-service technology. Since customers are accustomed to using online food delivery apps, discomfort does not hinder their perception of ease of use or usefulness. Insecurity ("INS")doesn'tnegativelyimpactPEOU (β=0.038, ns) but has a positive impact on PU (β=-0.016, p<0.01), indicating that security concerns influence customers' perception of AIOFDS's usefulness. PEOU significantly enhances PU (β=0.085, p<0.001), while both PEOU (β =0.148, p<0.001) and PU (β =0.120, p<0.01) significantly affectbehavioralintentto order food via AIOFDS, demonstrating that customers are inclined to use the service. Additionally, customer satisfaction (CST) strongly influences online intention (OIN) (β=0.35, p<0.001), reinforcing its significance in shaping customer behavior. At AIOFDS, there are offered more customized food to customer due to AI based technologies. INT influences positively to OIN (β =0.058, p<0.001) which conveys that due to AIOFDS technologies, interactivity is high. Hence INT positively influences OIN.

7. Discussion

The findings of Customer intention to ordering food in AIOFDS, indicate that optimism (OPT) influences both perceived ease of use (PEOU) and perceived usefulness (PU), as consumers are confident in adopting new technology for food ordering (Ali et al., 2015). Innovation (INN) also positively affects PEOU and PU, as customers who frequently order food tend to be technologically aware, interested in emerging trends, and quick to adapt to new systems like AIOFDS. Discomfort has a negative impact on PEOU and PU; however, its effect is not significant, as most customers are already familiar with using technology for shopping, contradicting findings from studies on self-service technology. While insecurity does not influence PEOU, it does affect PU when ordering through AIOFDS. Consumers value human interaction when ordering food, which is absent in AIOFDS. As a result, INS do not impact PEOU but has a significant effect on PU.

The study confirms that PEOU has a significant impact on PU, consistent with previous research (Natarajan et al., 2017). This suggests that when consumers find AIOFDS easy to use, they are more likely to perceive it as beneficial. Both PEOU and PFL positively influence the intention to order food through AIOFDS. Customization (CST) plays a crucial role in shaping online ordering intention (OIN) at AIOFDS (Liébana-Cabanillas et al., 2017). CST is widely recognized as a key benefit of e-commerce and mobile commerce, enabling seamless food

ordering through AI-powered platforms. Interactivity (INT) also significantly impacts OIN at AIOFDS Similar technologies are incorporated into AIOFDS, research has highlighted the significance of interactivity in AI-driven experiences, particularly in virtual reality settings.

8. Conclusion

The purpose of this investigation was toshed light on consumer acceptancebehavior regarding AIOFDS inBharat. The research model was developed based on prior studies on IT adoption (Davis, 1989) and incorporated two context-specific factors, CST and INT, in relation to AIOFDS and framework was tested using the PLS-SEM method, effectively explaining the behavioral intention to order through AIOFDS.

OPT influences PEOU and impact PU, as consumers adopt AIOFDS for its convenience, control, and efficiency in food ordering. However, concerns related to INS persist, affecting PU but not PEOU, which contradicts previous research. Similarly, DIF does not impact either PEOU or PU, indicating buyers don'texperience unease with tech, whichcontrasts with findings from studieson tech for self-service. PEOU &PU are key forecasters of OIN at AIOFDS. Additionally, the study highlights that context-specific factors, CST and INT, significantly influence OIN, aligning with existing research. The findings suggest that consumers are inclined to adopt AIOFDS based on these factors, though security concerns remain a challenge. This study contributes a model for understanding OIN at AIOFDS by integrating two context-specific variables into the TRAM framework. This study highlights the critical need for additional research on consumer behavior in AIOFDS and the adoption of technology to automate online food ordering systems in the food industry and encourages further interdisciplinary research to practically validate and apply these techniques.

9. Limitations and Future Research Lines

The study serves as an initial step in understanding customer behavioral intentions toward ordering from AIOFDS. However, certain limitations exist. Firstly, as a cross-sectional study conducted exclusively in India, the findings are geographically constrained, and caution should be exercised when applying them to different contexts. Expanding this research to other developing nations with diverse cultural backgrounds could provide broader insights. Furthermore, demographic variables like gender, age, education, &income could be analyzed in a comparative framework. Future studies may incorporate additional variables, including "perceived risk", "trust", "customer enjoyment" customer experience", & "satisfaction", once AIOFDS is operational in Bharat. Since tests were conducted on the model solely within Bhartiya market, presents opportunities for additional research in other emerging economies. The conceptual framework, while theoretically promising, has yet to be tested in real-world scenarios.

References:

- **1.** Agrebi, S., &Jallais, J. (2015). Explain the intention to use smartphones for mobile shopping. *Journal of retailing and consumer services*, 22, 16-23.
- **2.** Agrebi, S., &Jallais, J. (2015). Explain the intention to use smartphones for mobile shopping. *Journal of retailing and consumer services*, 22, 16-23.
- **3.** Ahmed, B., & Ramish, M. S. (2024). Artificial intelligence and future HRM practices: a case of Pakistan business sector. *Journal of Development and Social Sciences*, 5(2), 395-405.

- **4.** Balaji, M. S., & Roy, S. K. (2017). Value co-creation with Internet of things technology in the retail industry. *Journal of Marketing Management*, *33*(1-2), 7-31.
- **5.** Ballantine, P. W. (2005). Effects of interactivity and product information on consumer satisfaction in an online retail setting. *International journal of retail & distribution management*, 33(6), 461-471.
- **6.** Chopra, K. (2019). Indian shopper motivation to use artificial intelligence: Generating Vroom's expectancy theory of motivation using grounded theory approach. *International Journal of Retail & Distribution Management*, 47(3), 331-347.
- 7. Chung, N., Han, H., & Joun, Y. (2015). Tourists' intention to visit a destination: The role of augmented reality (AR) application for a heritage site. *Computers in human behavior*, 50, 588-599.
- **8.** Cowan, K., & Ketron, S. (2019). A dual model of product involvement for effective virtual reality: The roles of imagination, co-creation, telepresence, and interactivity. *Journal of business research*, 100, 483-492.
- **9.** Cowan, K., & Ketron, S. (2019). A dual model of product involvement for effective virtual reality: The roles of imagination, co-creation, telepresence, and interactivity. *Journal of business research*, 100, 483-492.
- **10.** Coyle, J. R., & Thorson, E. (2001). The effects of progressive levels of interactivity and vividness in web marketing sites. *Journal of advertising*, *30*(3), 65-77.
- **11.** Danesi, M. (2016). Language and mathematics: An interdisciplinary guide (Vol. 1). Walter de Gruyter GmbH & Co KG.
- **12.** Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS quarterly*, 319-340.
- **13.** Flavián, C., Pérez-Rueda, A., Belanche, D., &Casaló, L. V. (2022). Intention to use analytical artificial intelligence (AI) in services—the effect of technology readiness and awareness. *Journal of Service Management*, *33*(2), 293-320.
- **14.** Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of marketing research*, *18*(1), 39-50.
- **15.** Fu, H. (2018). Factors influencing user usage intention on intelligent logistics information platform. *Journal of Intelligent & Fuzzy Systems*, 35(3), 2711-2720.
- **16.** Gupta, D., Chopra, R., Patel, M., & Joshi, R. (2021). Enhancing Customer Interactions with AI-Powered Sales Assistants: A Study Utilizing Natural Language Processing and Reinforcement Learning Algorithms. *Australian Advanced AI Research Journal*, 10(7).
- **17.** Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. *International Journal of Information Management*, 49, 157-169.
- **18.** Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. *Journal of Marketing theory and Practice*, 19(2), 139-152.
- **19.** Hallikainen, H., & Laukkanen, T. (2016). How technology readiness explains acceptance and satisfaction of digital services in B2B healthcare sector?.
- **20.** Ho, T. H. L., & Chen, Y. (2014). Vietnamese consumers' intention to use online shopping: the role of trust. *International Journal of Business and Management*, *9*(5), 145.
- **21.** Ibrahim, A., Reza, I. F., Hamid, M. A., Ma'sum, H., Hatta, H. R., De Wibowo, A., &Heroza, R. I. (2023). Social Consumer Relation Management Using Social Media as a Marketing Scheme in University. *J. Appl. Eng. Technol. Sci*, *5*(1), 224-229.

- **22.** Ismail, K. A., & Wahid, N. A. (2020). A review on technology readiness concept to explain consumer's online purchase intention. *International Journal of Industrial Management*, 6, 49-57.
- 23. Jeong, S. H., & Kim, H. K. (2023). Effect of trust in metaverse on usage intention through technology readiness and technology acceptance
- **24.** Kalasani, R. R. (2023). An exploratory study of the impacts of artificial intelligence and machine learning technologies in the supply chain and operations field. University of the Cumberlands.
- **25.** Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. *Business Horizons*, 63(1), 37-50.
- **26.** Kaul, D., & Khurana, R. (2022). Ai-driven optimization models for e-commerce supply chain operations: Demand prediction, inventory management, and delivery time reduction with cost efficiency considerations. *International Journal of Social Analytics*, 7(12), 59-77.
- **27.** Kesari, B., &Atulkar, S. (2016). Satisfaction of mall shoppers: A study on perceived utilitarian and hedonic shopping values. *Journal of Retailing and Consumer services*, *31*, 22-31.
- **28.** Kesari, B., & Atulkar, S. (2016). Satisfaction of mall shoppers: A study on perceived utilitarian and hedonic shopping values. *Journal of Retailing and Consumer services*, *31*, 22-31.
- **29.** Kim, T., & Chiu, W. (2019). Consumer acceptance of sports wearable technology: The role of technology readiness. *International Journal of Sports Marketing and Sponsorship*, 20(1), 109-126.
- **30.** Kim, T., & Chiu, W. (2019). Consumer acceptance of sports wearable technology: The role of technology readiness. *International Journal of Sports Marketing and Sponsorship*, 20(1), 109-126.
- **31.** Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. *International Journal of e-Collaboration (ijec)*, 11(4), 1-10.
- **32.** Lee, Y. E., &Benbasat, I. (2004). A framework for the study of customer interface design for mobile commerce. *International Journal of Electronic Commerce*, 8(3), 79-102.
- **33.** Leong, M. K., & Koay, K. Y. (2023). Towards a unified model of consumers' intentions to use drone food delivery services. *International Journal of Hospitality Management*, 113, 103539.
- **34.** Lu, L., Lu, T., Tian, C., & Zhang, X. (2024). AI: Bridging Ancient Wisdom and Modern Innovation in Traditional Chinese Medicine. *JMIR Medical Informatics*, 12(1), e58491.
- **35.** Novak, T. P., & Hoffman, D. L. (1997). Measuring the flow experience among web users. *Interval Research Corporation*, 31(1), 1-35.
- **36.** Nunnally, J. C. (1978). An overview of psychological measurement. *Clinical diagnosis of mental disorders: A handbook*, 97-146.
- **37.** O'brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. *Quality & quantity*, 41, 673-690.
- **38.** Ogonowski, A., Montandon, A., Botha, E., &Reyneke, M. (2014). Should new online stores invest in social presence elements? The effect of social presence on initial trust formation. *Journal of Retailing and Consumer Services*, 21(4), 482-491.
- **39.** Pantano, E., &Scarpi, D. (2022). I, robot, you, consumer: Measuring artificial intelligence types and their effect on consumers emotions in service. *Journal of Service Research*, 25(4), 583-600.

- **40.** Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. *Journal of service research*, *2*(4), 307-320.
- **41.** Rese, A., Baier, D., Geyer-Schulz, A., & Schreiber, S. (2017). How augmented reality apps are accepted by consumers: A comparative analysis using scales and opinions. *Technological Forecasting and Social Change*, *124*, 306-319.
- **42.** Sivathanu, B. (2019). An empirical study on the intention to use open banking in India. *Information Resources Management Journal (IRMJ)*, 32(3), 27-47.
- **43.** Speicher, M., Cucerca, S., & Krüger, A. (2017). VRShop: a mobile interactive virtual reality shopping environment combining the benefits of on-and offline shopping. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, *I*(3), 1-31.
- **44.** Walczuch, R., Lemmink, J., &Streukens, S. (2007). The effect of service employees' technology readiness on technology acceptance. *Information & management*, 44(2), 206-215.
- **45.** Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., ... & Zitnik, M. (2023). Scientific discovery in the age of artificial intelligence. *Nature*, 620(7972), 47-60.
- **46.** Weber, F. D., & Schütte, R. (2019). State-of-the-art and adoption of artificial intelligence in retailing. *Digital Policy, Regulation and Governance*, *21*(3), 264-279.
- **47.** Yen, D. C., Wu, C. S., Cheng, F. F., & Huang, Y. W. (2010). Determinants of users' intention to adopt wireless technology: An empirical study by integrating TTF with TAM. *Computers in Human Behavior*, 26(5), 906-915.
- **48.** Yen, H. R. (2005). An attribute-based model of quality satisfaction for internet self-service technology. *The Service Industries Journal*, 25(5), 641-659.
- **49.** Zhuang, X., Lin, L., Zhang, R., Li, J., & He, B. (2021). E-service quality perceptions of millennials and non-millennials on O2O delivery applications. *British Food Journal*, 123(12), 4116-4134.