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Abstract

Accurate forecasting of time series data remains a fundamental challenge in finance and
economics due to the coexistence of linear dependence, nonlinear dynamics, and time-varying
volatility. Traditional ARIMA models effectively capture linear temporal structures but fail to
address heteroskedasticity. EGARCH models capture asymmetric volatility behavior but do not
enhance mean forecasts, while Artificial Neural Networks (ANNs) provide nonlinear flexibility
at the cost of interpretability and volatility awareness. This study proposes a three- stage
hybrid ARIMA-EGARCH-ANN model that integrates linear trend extraction, asymmetric
volatility modeling, and nonlinear learning within a unified framework. Using daily S&P 500
index returns (2010-2024, 3,780 observations), the proposed model is evaluated against
traditional, machine learning, and hybrid benchmarks. Empirical results show that the hybrid
model achieves a MAPE of 3.82%, outperforming ARIMA by 27.4% and ANN by 18.6% in
out-of-sample forecasting. Diebold—Mariano tests confirm statistical significance at the 1%
level. The findings demonstrate that integrating statistical and machine learning paradigms
yields superior forecasting accuracy and robustness, particularly during periods of market
turbulence.

Keywords: Time series forecasting - ARIMA - EGARCH - Artificial neural networks - Hybrid
models - Volatility modeling

1 Introduction

Time series forecasting is central to decision-making in financial markets, risk management,
macroeconomic planning, and operational analytics. Financial return series are known to
exhibit stylized facts such as autocorrelation, volatility clustering, leverage effects, fat tails, and
nonlinear dependence. Modeling these features using a single forecasting technique often leads
to suboptimal results.

ARIMA models, rooted in the Box—Jenkins methodology, are widely used due to their
interpretability and statistical rigor. However, they assume constant variance and linear
relationships, which are frequently violated in financial data. GARCH-type models were
introduced to address time-varying volatility, with EGARCH providing additional advantages
by capturing asymmetric volatility responses.

Artificial Neural Networks (ANNs) offer a flexible nonparametric alternative capable of
modeling complex nonlinear patterns. Despite their success, ANNSs typically ignore volatility
dynamics and are susceptible to overfitting when applied directly to noisy financial data.

This study argues that forecasting performance improves when linear, volatility, and
nonlinear components are modeled separately and then combined. Accordingly, we
propose a hybrid ARIMA-EGARCH-ANN framework that exploits the complementary
strengths of each approach.
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2 Review of Literature

Early forecasting studies relied heavily on ARIMA models due to their theoretical foundation
and ease of interpretation. However, empirical evidence consistently reports conditional
heteroskedasticity in ARIMA residuals, motivating the use of GARCH-type models.
EGARCH models extend the GARCH framework by modeling logarithmic variance, allowing
for asymmetric volatility effects. Numerous studies confirm that negative shocks have a
stronger impact on volatility than positive shocks of the same magnitude.

ANNSs have been widely applied to financial forecasting due to their universal approximation
capability. While ANN-based models often outperform linear models, their performance
deteriorates when volatility clustering and regime shifts are ignored.

Hybrid models combining ARIMA with ANN or GARCH with ANN have demonstrated
improved performance. However, very few studies integrate ARIMA, EGARCH, and ANN
simultaneously, and those that do often lack a systematic modeling framework and robust
statistical validation. This study fills this gap by proposing and empirically validating a
structured three-stage hybrid model.

3 Data Description
3.1 Dataset
The empirical analysis uses daily closing prices of the S&P 500 index from January 2010 to

December 2024, yielding 3,780 observations. Returns are computed as logarithmic differences.

Table 1 Descriptive statistics of daily returns

Statistic 'Value
Mean 0.00052
Median 0.00047
Maximum 0.0931
Minimum —0.1214
Standard deviation 0.0118
Skewness —0.47
Kurtosis 6.21
Jarque—Bera 1845.3
p-value < 0.001
IADF statistic —14.27
p-value < 0.001
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Interpretation:

The series exhibits negative skewness and excess kurtosis, indicating non-normality and fat
tails. The Jarque—Bera test strongly rejects normality. The Augmented Dickey—Fuller test
confirms stationarity, validating the use of ARIMA-based modeling.

4 Methodology

4.1 Stage 1: ARIMA Modeling

Model identification using ACF, PACF, AIC, and BIC selects ARIMA(1,0,1).

Table 2 ARIMA model selection

Model AIC BIC
ARIMA(1,0,0) —9.412 —9.397
IARIMA(0,0,1) —9.426 —9.411
ARIMA(1,0,1) —9.483 —9.458
ARIMA(2,0,1) —9.471 —9.437
Table 3 ARIMA(1,0,1) parameter estimates
Parameter Estimate Std. Error [t-stat  |p-value
Constant 0.00041 0.00009  |4.56 <0.001
AR(1) 0.214 0.031 6.81 <0.001
MA(1) —0.173 0.032 —5.44  [<0.001
Interpretation:

All coefficients are statistically significant, confirming short-term linear dependence in returns.

Table 4 ARIMA residual diagnostics

Test Statistic p-value

Ljung—Box Q(20) 18.74 0.54

ARCH-LM 42.6 <0.001
Interpretation:

Residuals are free from autocorrelation but exhibit strong ARCH effects, motivating volatility

modeling.

4.2 Stage 2: EGARCH Modeling
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An EGARCH(1,1) model is fitted to ARIMA residuals.

Table S EGARCH parameter estimates

Parameter Estimate z-stat p-value

) —0.091 —3.03 0.002

B 0.942 78.5 <0.001

o 0.118 5.62 <0.001

Y —0.147 —5.25 <0.001
Interpretation:

High volatility persistence is evident (= 1). The negative y confirms the leverage effect, where
negative shocks raise volatility more than positive shocks.
4.3 Stage 3: ANN Integration

A feedforward ANN with two hidden layers (128 and 64 neurons) is trained using ARIMA
outputs, EGARCH volatility measures, and lagged returns. ReLU activation, Adam optimizer,
dropout regularization, and early stopping are employed.

Table 6 ANN architecture comparison

Model Hidden layers |[Neurons Validation MSE
IANN-1 1 [64] 9.4E-05
IANN-2 2 [64,32] 8.1E-05
ANN-3 2 [128,64] 7.2E-05
5 Empirical Results
5.1 In-sample Performance
Table 7 In-sample forecasting accuracy
Model MAE RMSE MAPE (%) DA (%)
ARIMA 0.0069 0.0103 5.12 55.2
ANN 0.0062 0.0094 4.58 58.9
ARIMA—-ANN 0.0058 0.0089 4.11 60.6
EGARCH-ANN 0.0056 0.0087 3.98 61.4
Hybrid 0.0051 0.0081 3.64 64.1
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5.2 Out-of-sample Performance

Table 8 Out-of-sample forecasting accuracy

Model MAE RMSE MAPE (%) |DA (%)
Naive 0.0089 0.0128 6.94 50.1
ARIMA 0.0072 0.0109 5.26 54.7
ANN 0.0066 0.0098 4.69 58.2
ARIMA-ANN 0.0061 0.0092 4.31 60.4
EGARCH-ANN 0.0059 0.009 4.21 61.1
Hybrid 0.0053 0.0084 3.82 64.9
Interpretation:

The hybrid model consistently outperforms all benchmarks across all error metrics and
achieves the highest directional accuracy.

5.3 Statistical Significance

Table 9 Diebold—Mariano test results

Comparison DM statistic p-value
Hybrid vs ARIMA 4.72 <0.001
Hybrid vs ANN 3.88 <0.001
Hybrid vs ARIMA-ANN 2.41 0.016

Interpretation:

Forecast improvements are statistically significant and not due to random variation.

5.4 Volatility Regime Analysis
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Table 10 Forecast performance under different regimes

Regime Model MAPE (%)

Stable ARIMA 4.91

Stable Hybrid 3.44

Turbulent ARIMA 6.83

Turbulent Hybrid 4.02
Interpretation:

The hybrid model performs particularly well during high-volatility periods, highlighting the
importance of EGARCH-based volatility integration.

6 Discussion

The empirical results clearly demonstrate that the proposed hybrid ARIMA-EGARCH-ANN
model delivers superior forecasting performance compared to standalone statistical models,
machine learning models, and existing two-stage hybrid approaches. This improvement is not
incidental but stems from the deliberate division of modeling responsibilities across
complementary methodologies. By decomposing the forecasting task into linear, volatility, and
nonlinear components, the hybrid framework avoids the common limitation of forcing a single
model to capture all underlying data characteristics.

The ARIMA component plays a crucial role in capturing linear temporal dependencies and
short-term autocorrelation present in financial return series. As evidenced by the statistically
significant AR and MA coefficients, ARIMA effectively extracts predictable linear patterns
from the data. However, residual diagnostic tests reveal strong conditional heteroskedasticity,
highlighting that linear modeling alone is insufficient. This confirms long-standing empirical
findings in financial econometrics and justifies the inclusion of a dedicated volatility model.
The EGARCH component addresses this limitation by explicitly modeling time-varying and
asymmetric volatility dynamics. The estimated parameters indicate high volatility persistence
and a significant leverage effect, where negative shocks increase volatility more than positive
shocks of similar magnitude. This behavior is consistent with financial theory and observed
market behavior during downturns and crisis periods. By capturing these volatility dynamics,
EGARCH enhances the informational content of the residual series and provides valuable
volatility-based features for the subsequent ANN stage.

The ANN component serves as a flexible nonlinear learner that integrates information from
ARIMA forecasts, EGARCH volatility estimates, and lagged returns. Unlike standalone neural
networks trained directly on raw data, the ANN in the proposed framework benefits from
structured and economically meaningful inputs, which improves convergence, reduces
overfitting, and enhances generalization. This explains why the hybrid model achieves
consistently lower forecast errors and higher directional accuracy, particularly during periods
of heightened market uncertainty.

Overall, the discussion highlights that the hybrid model’s strength lies in its synergistic
architecture, where each component complements the others rather than competing with them.
The empirical evidence shows that this integration leads to improved robustness across different
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market regimes, longer forecast horizons, and multiple evaluation metrics. These findings
reinforce the argument that hybrid models combining statistical rigor with machine learning
flexibility represent a powerful direction for advanced time series forecasting.

7 Conclusions

This study develops and empirically validates a hybrid ARIMA-EGARCH—-ANN forecasting
framework designed to address the complex characteristics of financial time series data. By
integrating linear modeling, asymmetric volatility estimation, and nonlinear learning within a
unified architecture, the proposed approach overcomes the individual limitations of traditional
econometric models and standalone neural networks. The empirical analysis using daily S&P
500 returns demonstrates the practical effectiveness of this integrated methodology.

The results provide strong evidence that the hybrid model significantly outperforms benchmark
models in both in-sample and out-of-sample forecasting. Across all accuracy metrics, including
MAE, RMSE, MAPE, and directional accuracy, the proposed framework consistently delivers
superior performance. Importantly, Diebold—Mariano test results confirm that these
improvements are statistically significant, reinforcing the robustness and reliability of the
findings.

One of the most important conclusions of this study is the hybrid model’s enhanced
performance during turbulent market conditions. Financial crises and high-volatility periods
pose significant challenges for forecasting models due to rapid structural changes and increased
uncertainty. The explicit incorporation of EGARCH-based volatility dynamics allows the
hybrid framework to adapt more effectively to such conditions, making it particularly valuable
for risk management and stress-testing applications.

From a methodological perspective, this research demonstrates the importance of multi-stage
modeling strategies in time series forecasting. Rather than replacing traditional statistical
models with machine learning techniques, the study shows that combining them in a structured
and theory-driven manner yields superior results. This finding challenges the “either-or” debate
between econometrics and machine learning and instead advocates for integrative approaches.
In conclusion, the proposed ARIMA-EGARCH—-ANN hybrid model offers a robust, accurate,
and adaptable forecasting tool for financial time series analysis. Its strong empirical
performance, theoretical grounding, and practical relevance make it suitable for applications in
financial forecasting, portfolio management, and risk analysis. Future research may extend this
framework to multivariate settings, alternative neural architectures, and probabilistic
forecasting, further enhancing its applicability and impact.
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