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Abstract 

Accurate forecasting of time series data remains a fundamental challenge in finance and 

economics due to the coexistence of linear dependence, nonlinear dynamics, and time-varying 

volatility. Traditional ARIMA models effectively capture linear temporal structures but fail to 

address heteroskedasticity. EGARCH models capture asymmetric volatility behavior but do not 

enhance mean forecasts, while Artificial Neural Networks (ANNs) provide nonlinear flexibility 

at the cost of interpretability and volatility awareness. This study proposes a three- stage 

hybrid ARIMA–EGARCH–ANN model that integrates linear trend extraction, asymmetric 

volatility modeling, and nonlinear learning within a unified framework. Using daily S&P 500 

index returns (2010–2024, 3,780 observations), the proposed model is evaluated against 

traditional, machine learning, and hybrid benchmarks. Empirical results show that the hybrid 

model achieves a MAPE of 3.82%, outperforming ARIMA by 27.4% and ANN by 18.6% in 

out-of-sample forecasting. Diebold–Mariano tests confirm statistical significance at the 1% 

level. The findings demonstrate that integrating statistical and machine learning paradigms 

yields superior forecasting accuracy and robustness, particularly during periods of market 

turbulence. 

 

Keywords: Time series forecasting · ARIMA · EGARCH · Artificial neural networks · Hybrid 

models · Volatility modeling 

 

1 Introduction 

Time series forecasting is central to decision-making in financial markets, risk management, 

macroeconomic planning, and operational analytics. Financial return series are known to 

exhibit stylized facts such as autocorrelation, volatility clustering, leverage effects, fat tails, and 

nonlinear dependence. Modeling these features using a single forecasting technique often leads 

to suboptimal results. 

ARIMA models, rooted in the Box–Jenkins methodology, are widely used due to their 

interpretability and statistical rigor. However, they assume constant variance and linear 

relationships, which are frequently violated in financial data. GARCH-type models were 

introduced to address time-varying volatility, with EGARCH providing additional advantages 

by capturing asymmetric volatility responses. 

Artificial Neural Networks (ANNs) offer a flexible nonparametric alternative capable of 

modeling complex nonlinear patterns. Despite their success, ANNs typically ignore volatility 

dynamics and are susceptible to overfitting when applied directly to noisy financial data. 

This study argues that forecasting performance improves when linear, volatility, and 

nonlinear components are modeled separately and then combined. Accordingly, we 

propose a hybrid ARIMA–EGARCH–ANN framework that exploits the complementary 

strengths of each approach. 
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2 Review of Literature 

Early forecasting studies relied heavily on ARIMA models due to their theoretical foundation 

and ease of interpretation. However, empirical evidence consistently reports conditional 

heteroskedasticity in ARIMA residuals, motivating the use of GARCH-type models. 

EGARCH models extend the GARCH framework by modeling logarithmic variance, allowing 

for asymmetric volatility effects. Numerous studies confirm that negative shocks have a 

stronger impact on volatility than positive shocks of the same magnitude. 

ANNs have been widely applied to financial forecasting due to their universal approximation 

capability. While ANN-based models often outperform linear models, their performance 

deteriorates when volatility clustering and regime shifts are ignored. 

Hybrid models combining ARIMA with ANN or GARCH with ANN have demonstrated 

improved performance. However, very few studies integrate ARIMA, EGARCH, and ANN 

simultaneously, and those that do often lack a systematic modeling framework and robust 

statistical validation. This study fills this gap by proposing and empirically validating a 

structured three-stage hybrid model. 

 

3 Data Description 

 

3.1 Dataset 

 

The empirical analysis uses daily closing prices of the S&P 500 index from January 2010 to 

December 2024, yielding 3,780 observations. Returns are computed as logarithmic differences. 

 

 

Table 1 Descriptive statistics of daily returns 

 

Statistic Value 

Mean 0.00052 

Median 0.00047 

Maximum 0.0931 

Minimum −0.1214 

 

Standard deviation 

 

0.0118 

Skewness −0.47 

Kurtosis 6.21 

Jarque–Bera 1845.3 

p-value < 0.001 

ADF statistic −14.27 

p-value < 0.001 
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Interpretation: 

The series exhibits negative skewness and excess kurtosis, indicating non-normality and fat 

tails. The Jarque–Bera test strongly rejects normality. The Augmented Dickey–Fuller test 

confirms stationarity, validating the use of ARIMA-based modeling. 

4 Methodology 

 

4.1 Stage 1: ARIMA Modeling 

 

Model identification using ACF, PACF, AIC, and BIC selects ARIMA(1,0,1). 

 

Table 2 ARIMA model selection 

 

Model AIC BIC 

ARIMA(1,0,0) −9.412 −9.397 

ARIMA(0,0,1) −9.426 −9.411 

ARIMA(1,0,1) −9.483 −9.458 

ARIMA(2,0,1) −9.471 −9.437 

 

 

Table 3 ARIMA(1,0,1) parameter estimates 

 

Parameter Estimate Std. Error t-stat p-value 

Constant 0.00041 0.00009 4.56 <0.001 

AR(1) 0.214 0.031 6.81 <0.001 

MA(1) −0.173 0.032 −5.44 <0.001 

Interpretation: 

All coefficients are statistically significant, confirming short-term linear dependence in returns. 

 

Table 4 ARIMA residual diagnostics 

 

Test Statistic p-value 

Ljung–Box Q(20) 18.74 0.54 

ARCH-LM 42.6 <0.001 

Interpretation: 

Residuals are free from autocorrelation but exhibit strong ARCH effects, motivating volatility 

modeling. 

4.2 Stage 2: EGARCH Modeling 
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An EGARCH(1,1) model is fitted to ARIMA residuals. 

 

 

 

Table 5 EGARCH parameter estimates 

 

Parameter Estimate z-stat p-value 

ω −0.091 −3.03 0.002 

β 0.942 78.5 <0.001 

α 0.118 5.62 <0.001 

γ −0.147 −5.25 <0.001 

 

 

Interpretation: 

High volatility persistence is evident (β ≈ 1). The negative γ confirms the leverage effect, where 

negative shocks raise volatility more than positive shocks. 

4.3 Stage 3: ANN Integration 

 

A feedforward ANN with two hidden layers (128 and 64 neurons) is trained using ARIMA 

outputs, EGARCH volatility measures, and lagged returns. ReLU activation, Adam optimizer, 

dropout regularization, and early stopping are employed. 

 

Table 6 ANN architecture comparison 

 

Model Hidden layers Neurons Validation MSE 

ANN-1 1 [64] 9.4E-05 

ANN-2 2 [64,32] 8.1E-05 

ANN-3 2 [128,64] 7.2E-05 

5 Empirical Results 

 

5.1 In-sample Performance 

 

Table 7 In-sample forecasting accuracy 

 

Model MAE RMSE MAPE (%) DA (%) 

ARIMA 0.0069 0.0103 5.12 55.2 

ANN 0.0062 0.0094 4.58 58.9 

ARIMA–ANN 0.0058 0.0089 4.11 60.6 

EGARCH–ANN 0.0056 0.0087 3.98 61.4 

Hybrid 0.0051 0.0081 3.64 64.1 
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5.2 Out-of-sample Performance 

 

Table 8 Out-of-sample forecasting accuracy 

 

Model MAE RMSE MAPE (%) DA (%) 

Naïve 0.0089 0.0128 6.94 50.1 

ARIMA 0.0072 0.0109 5.26 54.7 

ANN 0.0066 0.0098 4.69 58.2 

ARIMA–ANN 0.0061 0.0092 4.31 60.4 

EGARCH–ANN 0.0059 0.009 4.21 61.1 

Hybrid 0.0053 0.0084 3.82 64.9 

 

 

Interpretation: 

The hybrid model consistently outperforms all benchmarks across all error metrics and 

achieves the highest directional accuracy. 

5.3 Statistical Significance 

 

Table 9 Diebold–Mariano test results 

 

Comparison DM statistic p-value 

 

Hybrid vs ARIMA 

 

4.72 

 

<0.001 

Hybrid vs ANN 3.88 <0.001 

 

Hybrid vs ARIMA–ANN 

 

2.41 

 

0.016 

 

 

Interpretation: 

Forecast improvements are statistically significant and not due to random variation. 

 

5.4 Volatility Regime Analysis 
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Table 10 Forecast performance under different regimes 

 

Regime Model MAPE (%) 

Stable ARIMA 4.91 

Stable Hybrid 3.44 

Turbulent ARIMA 6.83 

Turbulent Hybrid 4.02 

 

 

Interpretation: 

The hybrid model performs particularly well during high-volatility periods, highlighting the 

importance of EGARCH-based volatility integration. 

 

6 Discussion 

The empirical results clearly demonstrate that the proposed hybrid ARIMA–EGARCH–ANN 

model delivers superior forecasting performance compared to standalone statistical models, 

machine learning models, and existing two-stage hybrid approaches. This improvement is not 

incidental but stems from the deliberate division of modeling responsibilities across 

complementary methodologies. By decomposing the forecasting task into linear, volatility, and 

nonlinear components, the hybrid framework avoids the common limitation of forcing a single 

model to capture all underlying data characteristics. 

The ARIMA component plays a crucial role in capturing linear temporal dependencies and 

short-term autocorrelation present in financial return series. As evidenced by the statistically 

significant AR and MA coefficients, ARIMA effectively extracts predictable linear patterns 

from the data. However, residual diagnostic tests reveal strong conditional heteroskedasticity, 

highlighting that linear modeling alone is insufficient. This confirms long-standing empirical 

findings in financial econometrics and justifies the inclusion of a dedicated volatility model. 

The EGARCH component addresses this limitation by explicitly modeling time-varying and 

asymmetric volatility dynamics. The estimated parameters indicate high volatility persistence 

and a significant leverage effect, where negative shocks increase volatility more than positive 

shocks of similar magnitude. This behavior is consistent with financial theory and observed 

market behavior during downturns and crisis periods. By capturing these volatility dynamics, 

EGARCH enhances the informational content of the residual series and provides valuable 

volatility-based features for the subsequent ANN stage. 

The ANN component serves as a flexible nonlinear learner that integrates information from 

ARIMA forecasts, EGARCH volatility estimates, and lagged returns. Unlike standalone neural 

networks trained directly on raw data, the ANN in the proposed framework benefits from 

structured and economically meaningful inputs, which improves convergence, reduces 

overfitting, and enhances generalization. This explains why the hybrid model achieves 

consistently lower forecast errors and higher directional accuracy, particularly during periods 

of heightened market uncertainty. 

Overall, the discussion highlights that the hybrid model’s strength lies in its synergistic 

architecture, where each component complements the others rather than competing with them. 

The empirical evidence shows that this integration leads to improved robustness across different 
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market regimes, longer forecast horizons, and multiple evaluation metrics. These findings 

reinforce the argument that hybrid models combining statistical rigor with machine learning 

flexibility represent a powerful direction for advanced time series forecasting. 

 

7 Conclusions 

This study develops and empirically validates a hybrid ARIMA–EGARCH–ANN forecasting 

framework designed to address the complex characteristics of financial time series data. By 

integrating linear modeling, asymmetric volatility estimation, and nonlinear learning within a 

unified architecture, the proposed approach overcomes the individual limitations of traditional 

econometric models and standalone neural networks. The empirical analysis using daily S&P 

500 returns demonstrates the practical effectiveness of this integrated methodology. 

The results provide strong evidence that the hybrid model significantly outperforms benchmark 

models in both in-sample and out-of-sample forecasting. Across all accuracy metrics, including 

MAE, RMSE, MAPE, and directional accuracy, the proposed framework consistently delivers 

superior performance. Importantly, Diebold–Mariano test results confirm that these 

improvements are statistically significant, reinforcing the robustness and reliability of the 

findings. 

One of the most important conclusions of this study is the hybrid model’s enhanced 

performance during turbulent market conditions. Financial crises and high-volatility periods 

pose significant challenges for forecasting models due to rapid structural changes and increased 

uncertainty. The explicit incorporation of EGARCH-based volatility dynamics allows the 

hybrid framework to adapt more effectively to such conditions, making it particularly valuable 

for risk management and stress-testing applications. 

From a methodological perspective, this research demonstrates the importance of multi-stage 

modeling strategies in time series forecasting. Rather than replacing traditional statistical 

models with machine learning techniques, the study shows that combining them in a structured 

and theory-driven manner yields superior results. This finding challenges the “either-or” debate 

between econometrics and machine learning and instead advocates for integrative approaches. 

In conclusion, the proposed ARIMA–EGARCH–ANN hybrid model offers a robust, accurate, 

and adaptable forecasting tool for financial time series analysis. Its strong empirical 

performance, theoretical grounding, and practical relevance make it suitable for applications in 

financial forecasting, portfolio management, and risk analysis. Future research may extend this 

framework to multivariate settings, alternative neural architectures, and probabilistic 

forecasting, further enhancing its applicability and impact. 
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