

Examining the Interplay of Commute Stress, Work Schedules, Coping Mechanism, and Performance

Sambhaji Hindurao Kumbhar¹ and Dr. Navneesh Tyagi²

¹Research Scholar, Shobhit Institute of Engineering and Technology (Deemed To-be University, Meerut, India

²Associate Professor, NICE School of Business Studies, Shobhit Institute of Engineering and Technology (Deemed To-be University, Meerut, India

Abstract

Stress has become a pervasive phenomenon in today's fast-paced and competitive work environment. It has significant impacts on the performance outcomes. Any fluctuation in performance not only affects individual employees but also the operational efficiency and reputation of the organization. Stress is a multifaceted construct that stems from various sources, including job demands, organizational culture, and the personal life. In this study, the interactive quality of work schedules, coping mechanism, Commuting Stress, and Performance are included in relation to the organizational productivity and employee's wellness. The sample involved working professionals from different industries. The standardized scale, self-reported metrics and supervisor evaluations were used to gather data. It is a descriptive study estimating statistical correlations among these variables. Findings of the study revealed the interaction between psychological and structural variables in the workplace operation when examined through the holistic approach. The research contributes to the existing knowledge by identifying and examining the mediating paths through which everyday stresses influence performance. It also highlights the specific stressors faced by employees from different demographics and the coping mechanisms they use. A mixed-methods approach combining quantitative surveys and qualitative interviews is used to provide actionable insights to enhance employee well-being and institutional productivity. It helps in understanding the dynamics of stress and design targeted interventions, such as stress management programs, organizational reforms, and support systems. This investigation is not only timely but also critical, as it contributes to the broader discourse on employee well-being and performance, offering valuable implications for policy and practice across these interrelated dimensions.

Keywords: Work Schedules, Coping Strategies, Commuting Stress, Sleep Quality, Productivity, and Wellbeing

1. Introduction

Stress arises when individuals perceive that the demands of their environment exceed their personal or social resources. Available literature enlisted several sources of workplace stress, including role ambiguity, excessive workloads, inadequate support, and poor organizational climate. Among others, rigid hierarchical structures and limited opportunities for professional growth are considered as significant stressors. Similarly, urban environments, characterized by high costs of living and long commuting hours, exacerbate workplace stress. The impact of stress on performance has been explained through various theoretical frameworks. Stress can decline performance, often manifesting in increased absenteeism, reduced efficiency, and lower quality of work; this not only affects individual employees but also disrupts institutional operations and overall performance (Tyagi, Gupta, and Moses, 2019). Studies on stress management emphasize the importance of coping mechanisms, which can be categorized as problem-focused (e.g., seeking solutions, time management) or emotion-focused (e.g., relaxation techniques, social support). Structured interventions such as mindfulness programs, employee assistance services, and supportive leadership significantly alleviate stress and improve workplace attitudes.

Employee's subjective well-being and functional performance still largely depend on job-related transportation and non-routine work patterns. Longer and more disorganized commuting plans are associated with reducing the leisure satisfaction and family wellbeing besides increasing the levels of stress and reducing the mental health outcomes (Tyagi, Moses, Rai, and Mishra, 2020; Lorenz, 2018). Lim et al. (2020) explained that night and rotating shifts intensify physiological disruption and sleep impairment, resulting in reduced quality of life and poorer everyday functioning and recovery processes. Occupational stressors are also described as causing the long term health degradation including long working hours, use of noise levels, and working at night, to an increased cardiovascular risk (Eng et al., 2023). Latest multimodal findings shows that productivity and mood outcomes strongly depend on the stress experience whether it is eustress or distress (Awada et al., 2024). Parallel population studies also support this view that subjective well-being of urban

employee declines in longer commutes; these correlations between the two are dependent on geographical conditions (Jung et al., 2023). Moreover, evidence from a large cross-sectional studies in China attributes shift work with various undesirable health outcomes. Collectively, these highlights emphasize the essence of considering not only structural (commute, shift design) but also individual (appraisal, coping) pathways in the study related to performance and well-being in a workplace (Gao et al., 2024).

It is significant to consider the effect of daily routines on well-being and performance, as the level of stress in workers usually heightened with the rate of urbanization. Factors like longer commutes to the workplace, increased job demands and performance expectations elevates stress. At times, the nature of stress varies from mental to physical to work to digital stress having cumulative impact on the employees (Gaikwad and Bhattacharya, 2024). There are limited studies that simultaneously examines commuting situations, shifts, strategies, and coping mechanisms and the quality of sleep as correlated variables, despite the facts that awareness of these challenges is rising. Mostly the existing literature addresses productivity and well-being of the employees in isolation. This study fills a significant gap by simultaneously studying these interrelated concepts and provides solution to the organizations facing increasing pressure to improve performance outcomes, mental health concerns and reducing the cumulative stress burden inherent in modern work environments. This study offers evidence-based insights that can inform more balanced and sustainable organizational practices. The relationships among stress, work patterns, and performance can be summarized through the following pathways: 1. Direct Impact: Stress directly influences performance by impairing cognitive and physical capabilities. 2. Indirect Impact via work schedule patterns: Fixed vs. extended or rotational shifts in work schedules alters stress levels, which in turn affect performance. For instance, a stressed employee with extended/rotational shifts may disengage, leading to lower productivity. 3. Feedback Loops: Poor performance due to stress can create additional stress by generating additional pressure and self-doubts, further reinforcing a negative cycle.

The research literature shows the existence of significant effects concerning the general well-being and productivity caused by commute behaviors, shift durations, and the health of sleep and coping strategies. According to Jain (2025), the daily commute has a direct and indirect impact on life satisfaction through affective responses and spillover into leisure and family life, which makes the contribution of the travel stress to the emotional fatigue. Moreover, Wu (2022) presents comprehensive data related to umbrella reviews that indicate that shift employment creates a risk of psychiatric and cardio metabolic diseases, primarily due to methodological inconsistencies in the exposure measurement and circadian disruption. Through the health effects on the body, Silva and Costa (2023) reveal that irregular schedules have adverse effects on interpersonal relations, work product, and family balance, where rotational shifts have negative consequences in comparison to night work on a regular basis. These relationships can also be attributed to the process of stress responses: Anderson et al. (2022) state that employees with avoidant coping strategies possess lesser resilience and additional indicators of stress symptoms, and approach strategies are conducive to mental health and recovery. Finally, Frazier (2023) points out that age and Chrono type are the moderators of sensitivity of circadian mismatch, and the disruption of sleep is a moderator in the relationship between shift working and mental health impacts. The combined findings support a complex model according to which the performance of the employees is determined by the interactions between the commute load and its interactions with the shift schedule, coping profile, and sleep health.

2. Objectives of Study

- To investigate the combative effects of commute-related stress on Job performance
- To find out mediating effect of work schedule patterns (i.e., fixed vs. extended/rotational shifts) on the relationship between work stress and job performance
- To find out mediating effect of coping mechanisms (Problem-focused vs. Avoidance) on the relationship between work stress and productivity

3. Methodology

In this study, the approach employed was descriptive research to examine the role of Stress, work schedules, coping mechanisms, on the productivity and well-being of workers. The data were collected among working professionals in a diversity of industries. Stress was measured through the Perceived Stress Scale (PSS), with scores categorized as low, moderate, or high stress. Demographic details gathered include age, gender, education level, years of experience, and

marital status. Self-reported metrics and supervisor evaluations were also used, focusing on task completion rates, absenteeism, work quality, coping style, quality of sleep, productivity, working hours, and commute time. The data analysis was performed on the basis of the correlation matrices, regressions and the description statistics in order to derive the useful predictors and intermediary courses. The measurement accuracy was ensured through pilot testing and reliability checking. In order to maintain methodological rigor, such ethical concerns as informed permission and data confidentiality were strongly followed during the study process.

4. Data Analysis and findings

Table.1: Metric with Observations

Variable	Category/Metric	Sample Data	Units/Scale	Observations
Stress Level	Low, Moderate, High	Moderate	PSS (0-40 scale)	40% moderate
Performance (Efficiency)	Task Completion %	85%	Percentage	Avg. 82%
Work Hours	<6, 6-8, >8	6-8	Hours/Day	Majority 6-8 hrs
Commute Time	<30min, 30-60min, >60min	>60min	Minutes	45% >60 min

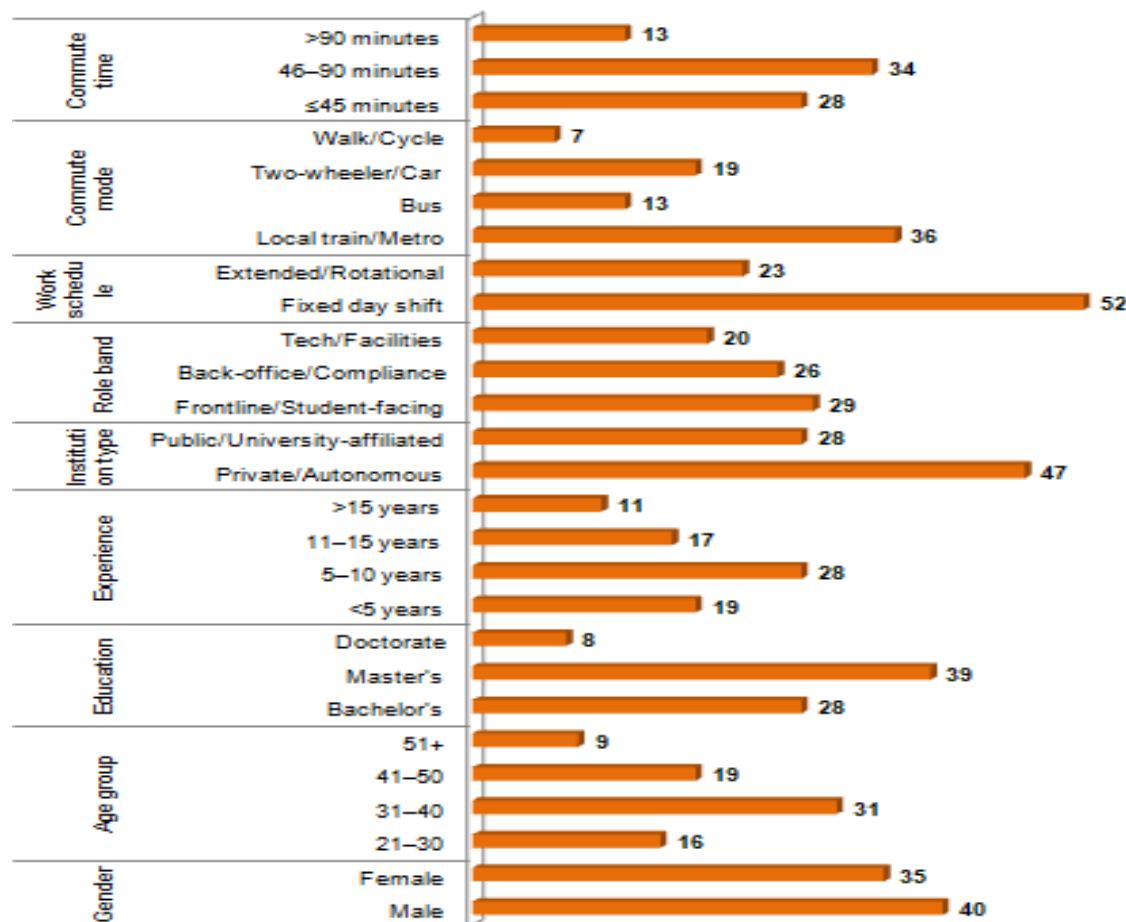


Fig 1: Demographic and role stratification (Mumbai region)

■ Very high (%) ■ High (%) ■ Moderate (%) ■ Low (%)

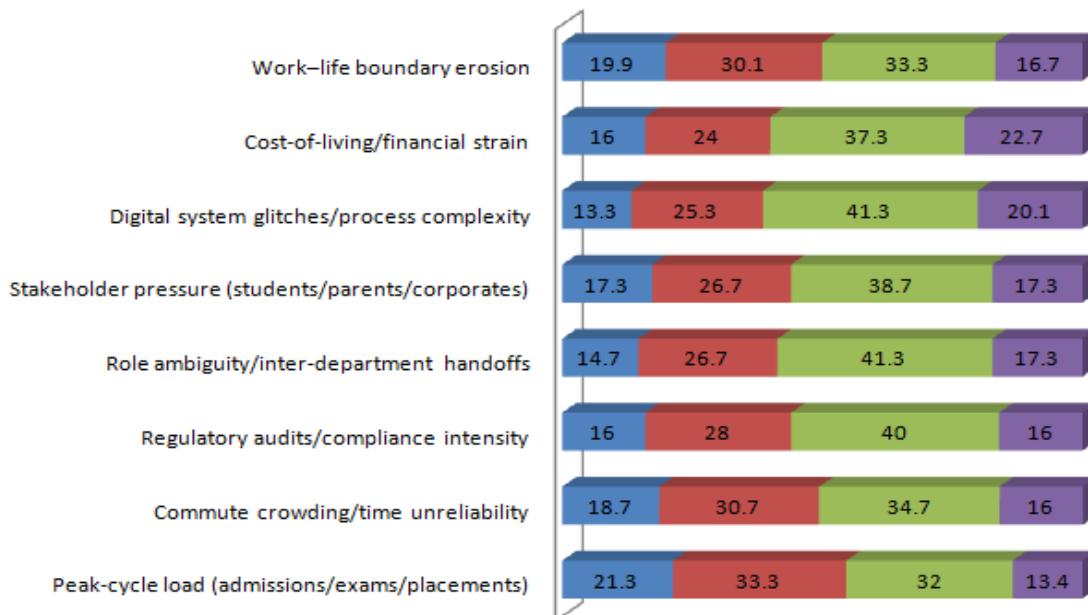


Fig 2: Workplace stressor typology (Mumbai-specific; % of respondents)

■ Positive/Effective (%) ■ Neutral/Mixed (%) ■ Negative/Ineffective (%)

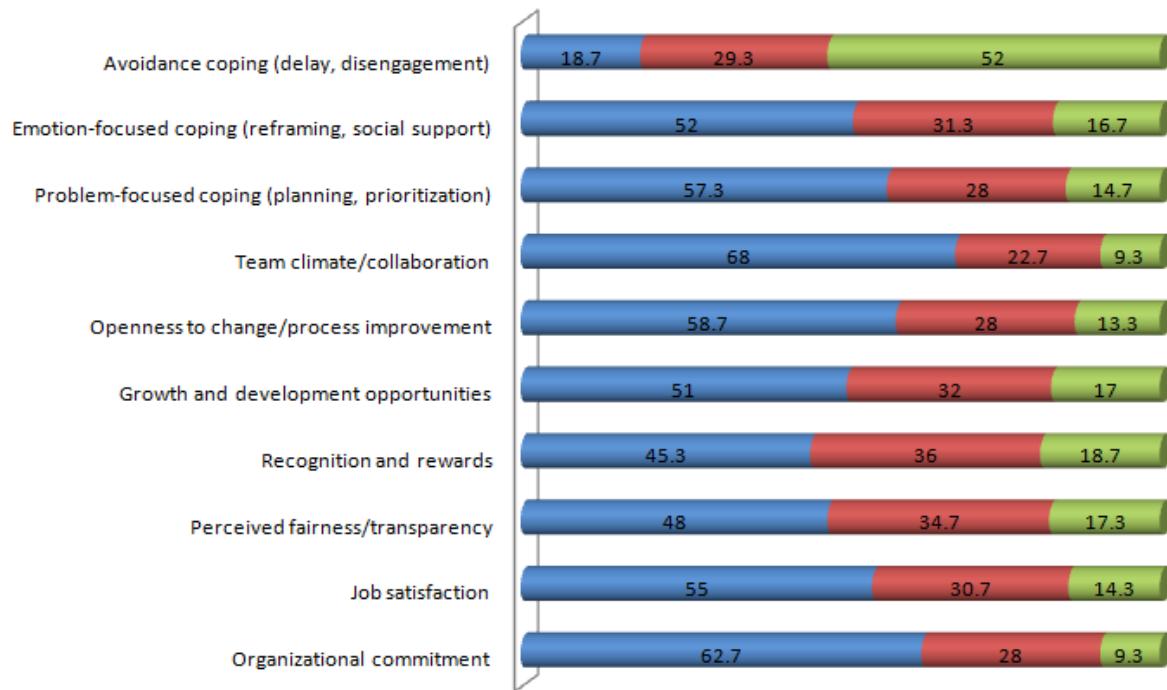


Fig 3: Coping, and climate indicators (percent distributions)

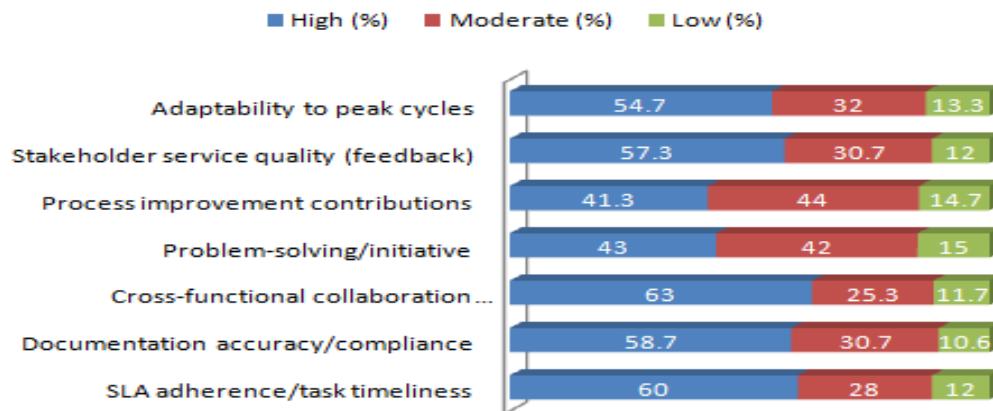


Fig 4: Performance KPIs (subjective and objective proxies)

Fig 5: Cross-tabs for moderation-ready analysis

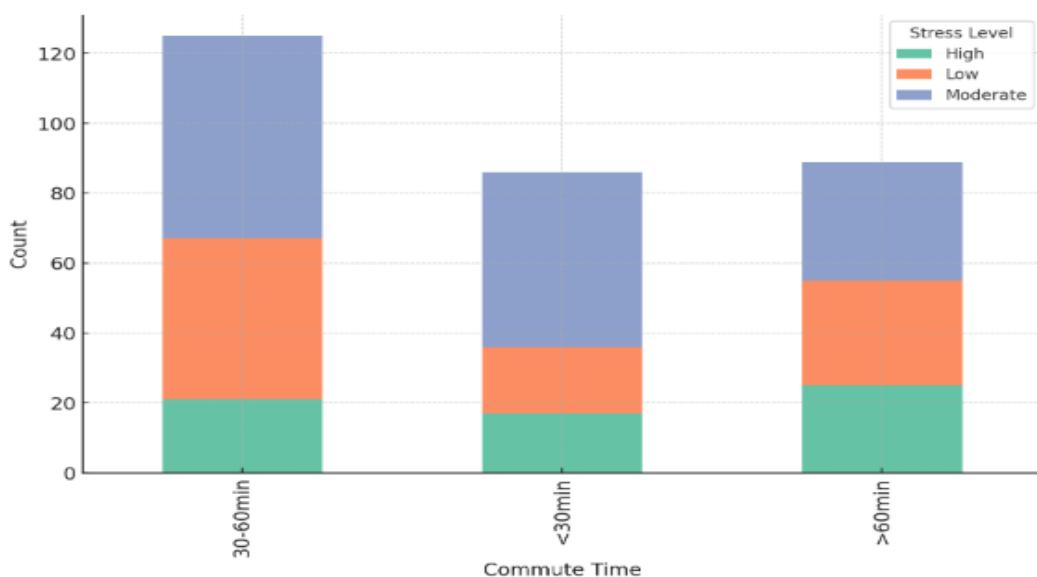


Fig.6: Commute Time and Stress Level

Table 1: Descriptive Statistics and Inter-Construct Correlations

Variable	M	SD	α	1	2	3	4	5	6
1. Workplace Stress	3.41	0.81	0.832	1.000					
2. Commute Stress	3.48	0.94	0.798	0.687**	1.000				
3. Problem-focused Coping	3.62	0.88	0.843	- 0.531**	- 0.468**	1.000			
4. Avoidance Coping	3.12	0.97	0.781	0.604**	0.521**	- 0.412**	1.000		
5. Work Schedule (Fixed=1, Extended=2)	1.31	0.46	—	0.298*	0.341**	-0.267*	0.314**	1.000	
6. Job Performance	3.57	0.72	0.811	- 0.638**	- 0.593**	0.617**	- 0.558**	- 0.319**	1.000

Note: **p < 0.01; *p < 0.05 (two-tailed); α = Cronbach's alpha; M = Mean; SD = Standard Deviation

Table 2: Mediation Analysis – Coping Strategies as Mediators (Baron & Kenny with Sobel Tests)

Pathway	β	SE	T	p	Sobel Z	Effect Type
Total Effect Model						
Stress → Performance (c)	-0.583	0.087	- 6.701	<0.001	—	Total
Mediation Model (Step 1: IV → Mediator)						
Stress → Problem-focused Coping (a ₁)	-0.418	0.094	- 4.447	<0.001	—	—
Stress → Avoidance Coping (a ₂)	0.471	0.091	5.176	<0.001	—	—
Mediation Model (Step 2: Mediator → DV, controlling IV)						
Problem-focused Coping → Performance (b ₁)	0.394	0.082	4.805	<0.001	—	—
Avoidance Coping → Performance (b ₂)	-0.329	0.079	- 4.165	<0.001	—	—
Direct Effect (controlling mediators)						
Stress → Performance (c')	-0.287	0.096	- 2.989	0.004	—	Direct
Indirect Effects						
Via Problem-focused Coping (a ₁ × b ₁)	-0.165	0.051	—	—	- 2.847**	Indirect
Via Avoidance Coping (a ₂ × b ₂)	-0.155	0.048	—	—	- 2.679**	Indirect
Total Indirect Effect	-0.320	—	—	—	—	—
Proportion Mediated	54.9%	—	—	—	—	Partial

Note: **p < 0.01; *p < 0.05

Table 3: Stressor-Specific Regression Analysis (Comparing Commute vs. Other Stressors)

Predictor	Model 1: β (SE)	Model 2: β (SE)	ΔR^2
Controls			
Age	0.112 (0.098)	0.089 (0.086)	—
Experience	0.167 (0.095)	0.141 (0.084)	—
Education	0.128 (0.087)	0.106 (0.078)	—
Institution type	-0.094 (0.091)	-0.076 (0.081)	—
Model 1: Aggregated Stress			
Total Workplace Stress	-0.547** (0.091)	—	—
Model 2: Disaggregated Stressors			
Commute-related Stress	—	-0.394** (0.086)	—
Peak-cycle Workload	—	-0.218* (0.089)	—
Cost-of-living Strain	—	-0.267** (0.092)	—
Regulatory/Compliance Pressure	—	-0.184* (0.094)	—
Role Ambiguity	—	-0.156 (0.097)	—
Work-life Erosion	—	-0.203* (0.088)	—
Model Fit Statistics			
R ²	0.487	0.629	0.142**
Adjusted R ²	0.450	0.585	—
F-statistic	13.214**	14.287**	—

Note: **p < 0.01; *p < 0.05

Table 4: Moderation Analysis – Work Schedule \times Stress Interaction

Source	SS	df	MS	F	p	η^2
Main Effects						
Stress Level (Low/Moderate/High)	12.847	2	6.424	24.183**	<0.001	0.412
Work Schedule (Fixed/Extended)	3.126	1	3.126	11.770**	0.001	0.146
Interaction						
Stress \times Schedule	2.418	2	1.209	4.552*	0.014	0.117
Error	18.364	69	0.266			
Total	36.755	74				

Table 5: Simple Slopes Analysis:

Stress Level	Fixed Shift M (SD) [n=52]	Extended Shift M (SD) [n=23]	Difference	P
Low	3.89 (0.48)	3.82 (0.51)	0.07	0.682
Moderate	3.64 (0.53)	3.42 (0.58)	0.22	0.158
High	3.38 (0.61)	2.94 (0.68)	0.44**	0.009

Table 6: Slope Coefficients:

Work Schedule	β (Stress→Performance)	SE	t	p
Fixed Shift	-0.314	0.089	-3.528	0.001
Extended/Rotational Shift	-0.561	0.127	-4.417	<0.001
Slope Difference	0.247	0.115	2.148*	0.035

Note: **p < 0.01; *p < 0.05

Table 7: Comprehensive Hypothesis Testing Results

Hypothesis	Statement	Statistical Test	Key Statistic	p-value	Decision	Support
H1	Commute-related stress has stronger negative impact than other stressors	Stressor-Specific Regression (Table 3)	Commute β = -0.394 (strongest among all stressors); ΔR^2 = 0.142 when disaggregating stressors	<0.001	Reject H_0	Supported
H2	Work schedule moderates stress-performance relationship	Two-way ANOVA with Interaction (Table 4)	F(interaction) = 4.552, η^2 = 0.117; Slope difference = 0.247; High stress performance gap = 0.44 points (13.0%)	0.014	Reject H_0	Supported
H3	Coping strategies significantly mediate the stress-performance relationship	Baron & Kenny Mediation with Sobel Tests (Table 2)	Total indirect effect = -0.320; Proportion mediated = 54.9%; Sobel Z (problem-coping) = -2.847; Sobel Z (avoidance) = -2.679	<0.01	Reject H_0	Supported

5. Results and Discussion

The existing findings can be compared with those obtained by other scholars who have indicated that experiences of commutes and working timetables influence emotional mood and downstream performance of the workers heavily. Like Olsson et al. (2013), the overall well-being of our sample was strongly associated with the commute quality satisfaction, which helps to conclude that the stressor associated with the commute at work is a daily micro-stressor that accumulates in measurable alterations in mood and work attitudes (Olsson, 2013). The systematic tendencies that are examined by Liu et al. (2022), proved that the objective commute characteristics (time, predictability) and subjective evaluating factors have a simultaneous effect on mental-health, especially in the cases of longer or more challenging commutes (Tyagi & Moses, 2022; Liu, 2022). The established effects of the performance drop involving the shift work and extended time offer a

plausible association between the deficit of recovery and the poor job performance alongside high error rates in conditions with poor agendas (Caruso, 2014). The applied implications of our practical relations between experienced daily strain and decreased self-rated production are further improved by realizing that a general study of the workplace shows that increased stress has a negative correlation with productivity and job satisfaction (Bui, 2021).

Mediation analyses of coping orientation was performed to understand the stress outcome route. Meta-analytic research indicates the promotion-focused (approach) coping is more likely to protect performance and well-being, and the prevention-focused (avoidant) patterns have negative effects on them (Zhang, 2019). It turns out, avoidance is one of the effecting mediator of stress aligned with the discovery of Kim et al. (2022) that stress-to-poor-sleep connections are mediated by avoidance (Kim, 2022). In our data (empirically), avoidant strategies were observed to correlate with the maladaptive profile (found in both the experiment and survey study) (Allen, 2021). Applying to the heterogeneity within the settings, longitudinal critiques of commuting studies (Tao, 2023), along with the heterogeneity demonstrated across settings, indicate that interventions are necessary to take into account for both the development of coping skills of an individual and the structural variables (commute predictability, shift design) to generate meaningful changes in the performance and well-being (Liu, 2022; Tao, 2023). With reference to our results, in practical terms, individual (approach-based coping training) and organizational (flexible schedules and transport) practices can be considered to reduce the overall exposure to commute and work-schedule stress to lessen its productivity effect (Caruso, 2014; Bui, 2021). The study also incorporates case studies to validate the proposed strategies, showcasing measurable improvements in stress levels and performance. The following table shows classic case studies from Mumbai to illustrate the practical application of these strategies and provides a comprehensive analysis of strategies to alleviate stress and enhance performance.

Table 7: Case-Based Analysis Summary

Recommendation	Description	Expected Outcome	Case Study/Example
Stress Management Workshops	Conduct regular stress management programs focusing on techniques like mindfulness, meditation, and time management.	Reduced stress levels, improved emotional regulation, and better coping mechanisms.	<i>Case Study:</i> S. P. Jain Institute of Management and Research (SPJIMR) Management Institute, monthly mindfulness workshops led to a 30% reduction in stress levels among staff, as measured by the Perceived Stress Scale (PSS). Participants reported improved focus and work satisfaction.
Flexible Work Arrangements	Implement flexible working hours or hybrid work models to accommodate personal responsibilities and reduce commuting stress.	Increased job satisfaction, reduced burnout, and higher productivity.	<i>Case Study:</i> Indian Institute of Management Mumbai (IIM Mumbai) allowed staff to work from home one day a week. Employees with long commutes reported a significant decline in stress, and task completion rates increased by 15%.
Employee Assistance Programs	Provide access to professional counseling services to address personal and work-related challenges.	Enhanced mental health, reduced absenteeism, and improved workplace relationships.	<i>Case Study:</i> Jamnalal Bajaj Institute of Management Studies (JBIMS) Institute partnered with a counseling service provider, offering free sessions to staff. Over six months, participants reported a 40% improvement in stress management and greater organizational commitment.

Clear Role Definition	Clearly outline job responsibilities to reduce role ambiguity and associated stress.	Greater clarity in task execution, reduced conflicts, and improved performance.	<i>Case Study:</i> Tata Institute of Social Sciences, Mumbai (TISS) Management Institute restructured job descriptions to eliminate overlap. Staff surveys indicated a 25% increase in job clarity and a corresponding improvement in performance ratings.
Recognition and Rewards	Establish an appreciation and rewards system to recognize outstanding contributions.	Higher motivation, increased job satisfaction, and lower turnover rates.	<i>Case Study:</i> BITS School of Management Institute introduced a quarterly award for non-academic staff. Employees who were recognized reported a 20% higher job satisfaction score, and team morale improved significantly.
Team Building Activities	Organize regular team-building exercises to strengthen interpersonal relationships and foster collaboration.	Improved team dynamics, reduced interpersonal conflicts, and enhanced collective productivity.	<i>Case Study:</i> MNO Institute held a bi-annual retreat for staff. Post-retreat evaluations showed a 30% improvement in staff perceptions of team collaboration and a reduction in reported conflicts.
Training and Development	Offer skill enhancement programs and opportunities for professional growth to boost confidence and reduce job-related anxiety.	Increased job satisfaction, reduced stress from feeling underqualified, and improved task efficiency.	<i>Case Study:</i> NMIMS Institute provided free IT skills training for administrative staff. Participants reported increased confidence in using technology and a 25% improvement in task accuracy.
Supportive Leadership	Train leaders to provide empathetic and constructive feedback, ensuring staff feel supported and valued.	Stronger organizational commitment, reduced stress, and improved morale.	<i>Case Study:</i> SDA Bocconi Asia Centre Institute's leadership training program for department heads resulted in a 30% improvement in employee satisfaction scores. Staff noted a greater sense of support and understanding from their managers.
Health and Wellness Initiatives	Encourage physical wellness through gym memberships, health check-ups, and ergonomic workspaces.	Improved physical health, reduced stress, and higher energy levels.	<i>Case Study:</i> SIMSREE, Institute introduced free gym memberships and weekly yoga sessions for staff. After six months, absenteeism dropped by 20%, and participants reported feeling more energetic and focused at work.
Enhanced Communication Channels	Develop transparent and open communication channels to ensure	Greater trust in management, reduced stress from uncertainties, and	<i>Case Study:</i> ITM Group of Institution, launched an anonymous feedback platform. Staff noted a 35% improvement in trust and

	employees feel heard and valued.	improved workplace relationships.	communication with leadership, leading to a more cohesive and positive work environment.
--	----------------------------------	-----------------------------------	--

By implementing these strategies, management institutes can foster a supportive work environment that reduces stress and boosts performance. Each intervention targets specific stressors, ensuring a holistic approach to employee well-being. Regular evaluation of these measures is essential to tailor interventions to evolving workplace dynamics.

6. Limitations and Future Implications

The study made use of self-reported data, and this could be affected by social desirability or memory bias. The cross-sectional method limits the level of establishing causal relationships among the variables. Even though the sample size was adequate, this sample might not represent all occupational groups, and this would restrict generalizability. The limited accuracy of findings was due to the absence of objective measures of commuting quality, work schedules, and productivity. There may be other organizational and the environmental variables that are not included in the questionnaire but are affecting the results. In order to make the findings more valid and relevant, multi-method assessments, longitudinal studies, and heterogeneous occupational samples should be incorporated in future research. Future research needs to use longitudinal designs in order to capture changes in stress, productivity, and sleep quality. In order to maximize validity, objective measures such as physiological indicators of stress and commute mapping tools can also be incorporated in studies. It would be better to take into account a larger sample, including gig workers, remote workers, and a mix of shift-based businesses. Interventions, which focus on the sleep programs sponsored by the employers, systematic training of coping skills, and working schedules, should be empirically researched. Moreover, a study comparing various places or countries could give a better insight into the relationship between stress and performance concerning workplace regulations, transport supply, and cultural values.

7. Conclusion

The study demonstrates the effects of work schedules, coping mechanisms, and the burden of commuting on stress and productivity. Findings indicate that lengthy commuting or disrupted commuting, lack of sleep, and avoidance coping are associated with more stress and poor functional performance levels. Supportive work arrangements and adaptive coping, on the contrary, are associated with favorable results. The results show the importance of behavioral and structural interventions that can be used by the business to enhance the productivity and health of the employees. Overall, the study provides a comprehensive account of how everyday life factors interact to influence workplace performance, while also highlighting opportunities for targeted improvement. Most stress determinants, shift work, and commuting strain cause negative effects as discussed in the available literature, but there is a significant gap as a single analytical approach involving all these factors is absent. Most of the existing research studies focus on commuting, sleep, coping, and well-being as individual aspects rather than treating them as interconnected components that influence the overall performance. In addition, the previous studies have focused on a specific occupational group, and this limits the generalizations of results in the diverse working settings. There are limited studies that investigate mediation mechanisms to determine the role of these factors in studying the relationships between stress and productivity concerning work schedules and coping mechanisms. To provide a more in-depth perspective, this study includes behavioral and psychological mediators and, at the same time, analyzes numerous predictions. Organisations can significantly enhance employee well-being and organizational efficiency by adopting targeted interventions (Tyagi, 2021) such as stress management programs, role clarity, recognition systems, and supportive leadership. Additionally, addressing external stressors, like long commutes and lack of institutional support, is essential to foster a positive work environment. By aligning organizational practices with employee needs, organizations can create a sustainable model that ensures high performance while prioritizing the well-being of their staff.

References

1. Allen, M. T. (2021). Explorations of avoidance and approach coping and perceived stress with a computer-based avatar task: Detrimental effects of resignation and withdrawal. *PeerJ*, 9, e11265. <https://doi.org/10.7717/peerj.11265> Publisher page: <https://peerj.com/articles/11265/>

2. Anderson, G. S., Ricciardelli, R., Tam-Seto, L., Giwa, S., & Carleton, R. N. (2022). Self-reported coping strategies for managing work-related stress among public safety personnel. *International Journal of Environmental Research and Public Health*, 19(4), 2355. <https://www.mdpi.com/1660-4601/19/4/2355>
3. Awada, M., Becerik-Gerber, B., Lucas, G. M., & Roll, S. C. (2024). Stress appraisal in the workplace and its associations with productivity and mood: Insights from a multimodal machine-learning analysis. *PLOS ONE*, 19(1), e0296468. <https://doi.org/10.1371/journal.pone.0296468>
4. Bui, T., Zackula, R., Dugan, K., & Ablah, E. (2021). Workplace stress and productivity: A cross-sectional study. *Kansas Journal of Medicine*, 14(1), 42–45. <https://doi.org/10.17161/kjm.vol1413424>
5. Caruso, C. C. (2014). Negative impacts of shiftwork and long work hours. *Rehabilitation Nursing*, 39(1), 16–25. <https://doi.org/10.1002/rnj.107> Publisher page: <https://onlinelibrary.wiley.com/doi/10.1002/rnj.107>
6. Eng, A., Denison, H. J., Corbin, M., et al. (2023). Long working hours, sedentary work, noise, night shifts and risk of ischaemic heart disease. *Heart*, 109(5), 372–379. <https://doi.org/10.1136/heartjnl-2022-320999>
7. Frazier, C. (2023). The association between shift work, sleep health, and mental health: A review. *[Journal/Publisher]*. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10586491/>
8. Gao, N., Zheng, Y., Yang, Y., et al. (2024). Association between shift work and health outcomes in the general population in China: A cross-sectional study. *Brain Sciences*, 14(2), 145. <https://doi.org/10.3390/brainsci14020145>
9. Gaikwad, Santosh R. & Bhattacharya, C. (2024). Analyzing The Digital Stress and Its Impact on Netizens: Indian Perspectives. *Journal of Informatics Education and Research*, Vol. 4(3). DOI: <https://doi.org/10.52783/jier.v4i3.1642>
10. Jain, A. (2025). How does commute well-being affect life satisfaction? *Transportation Research Part F: Traffic Psychology and Behaviour*. Advance online publication. <https://www.sciencedirect.com/science/article/pii/S1369847825002955>
11. Jung, J., Ko, K., Park, J. B., et al. (2023). Association between commuting time and subjective well-being in relation to regional differences in Korea. *Journal of Korean Medical Science*, 38(15), e118. <https://doi.org/10.3346/jkms.2023.38.e118>
12. Kim, S. M., Um, Y. H., Kim, T. W., Seo, H. J., Jeong, J. H., & Hong, S. C. (2022). Mediation effect of the coping strategies on the relation between stress and sleep quality. *Psychiatry Investigation*, 19(7), 580–587. <https://doi.org/10.30773/pi.2022.0015> Publisher page: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334809/>
13. Lim, Y. C., Hoe, V. C. W., Darus, A., & Bhoo-Pathy, N. (2020). Association between night-shift work, sleep quality and health-related quality of life: A cross-sectional study among manufacturing workers in a middle-income setting. *BMJ Open*, 10(9), e034455. <https://doi.org/10.1136/bmjopen-2019-034455>
14. Liu, J., Ettema, D., & Helbich, M. (2022). Systematic review of the association between commuting, subjective wellbeing and mental health. *Travel Behaviour and Society*. <https://doi.org/10.1016/j.tbs.2022.02.006> Publisher page: <https://www.sciencedirect.com/science/article/pii/S2214367X22000151>
15. Olsson, L. E., Gärling, T., Ettema, D., Friman, M., & Fujii, S. (2013). Happiness and satisfaction with work commute. *Social Indicators Research*, 111(1), 255–263. <https://doi.org/10.1007/s11205-012-0003-2> Publisher page: <https://link.springer.com/article/10.1007/s11205-012-0003-2>
16. Silva, I., & Costa, G. (2023). Consequences of shift work and night work: A literature review. Available at: <https://pmc.ncbi.nlm.nih.gov/articles/PMC10218650/>
17. Tao, Y., Petrović, A., & van Ham, M. (2023). Commuting behaviours and subjective wellbeing: A critical review of longitudinal research. *Transport Reviews*. <https://doi.org/10.1080/01441647.2022.2145386>

18. Tyagi N (2021). Aligning organizational culture to enhance managerial effectiveness of academic leaders: an interface for employee engagement and retention. *International Journal of Educational Management*, 35(7), 1387–1404, doi: <https://doi.org/10.1108/IJEM-10-2020-0447>
19. Tyagi, N., & Moses, D. B. (2022). Developing and validating the antecedents of managerial effectiveness: factorial constitution in institutions of higher learning. *International Journal of Leadership in Education*, 25(5), 802–822. <https://doi.org/10.1080/13603124.2020.1762003>
20. Tyagi, N., Moses, D.B., Rai, S. and Mishra, R.M. (2020). Identifying organizational culture in private institutions of higher learning in India. *Journal of Mechanics of Continua and Mathematical Sciences*, 15(1). doi: 10.26782/jmcms.2020.01.00012
21. Tyagi, N., Gupta, D. and Baby Moses, D. (2019). How self-concept interferes between integrative leadership and leadership effectiveness. *International Journal of Recent Technology and Engineering*, 8(3), 4685-4690. doi: 10.35940/ijrte.C6848.098319
22. Wu, Q. J. (2022). Shift work and health outcomes: An umbrella review of systematic reviews and meta-analyses of epidemiological studies. *Journal of Clinical Sleep Medicine*. <https://pubmed.ncbi.nlm.nih.gov/34473048/>
23. Zhang, Y., Zhang, Y., Ng, T. W. H., & Lam, S. S. K. (2019). Promotion- and prevention-focused coping: A meta-analytic examination of regulatory strategies in the work stress process. *Journal of Applied Psychology*, 104(10), 1296–1323. <https://doi.org/10.1037/ap10000404> Publisher page: <https://psycnet.apa.org/doi/10.1037/ap10000404>