Impact of Leadership on Teachers' Efficacy of Senior Secondary School Teachers

¹Harish Kumar Sharma, ²Dr. Sarita Verma

¹Ph.D Scholar, School of Education, Sharda University, Greater Noida, India ²Associate Professor, School of Education, Sharda University, Greater Noida, India

Abstract

The purpose of this research is to examine the relationships between various attributes pertaining **to senior school teachers' leadership behaviours** and the Self-Efficacy of teachers. The old saying that whatever happened at the top peculates down is applicable in the present academic world. Therefore, Leadership is a vital role in influencing teachers' efficacy. The present paper is an attempt to bring out the attributes of leadership, those which significantly influence Teachers' Efficacy. Regression Analysis was performed to test the relationship.

Keywords:-Leadership, Teacher Efficacy, Teacher, Vision

Introduction

The goal of education is to improve one's standard of living and open up new opportunities for fulfilment in life. Learners' potentials are realised, their competences are boosted and their abilities, preferences, and beliefs are enriched when they participate in an educational system that is both sound and successful. The importance of a high-quality teacher education programme that encourages growth and development has been emphasised here. It has been established that teaching competency and self-efficacy are two crucial factors in teacher development, and that these two factors each have their own criteria, dimensions, and qualities. We have evaluated the aspects that contribute to pupils' success in the upper secondary years. This chapter also covers the study's aims and hypotheses, as well as its confines and restrictions. All progressive nations have dedicated to the goal of delivering "Quality Education for All" through universalizing basic education. They've also come to appreciate that increasing access to high-quality secondary education is crucial to getting where they want to go. economic and social progress.

Despite the fact that a college degree may greatly improve this situation, only a small percentage of the population has access to such programmes. On the other hand, access to public schools means that education of any kind is within reach for virtually everyone in a given community; this gives the standard and effectiveness of public schools added weight in the context of individual, communal, and national progress.

Literature Review

According to the study, expanding awareness of how schools might increase student accomplishment can benefit by focusing on teachers' perceptions of their own efficacy as educators. Teacher efficacy can be defined as the conviction held by educators that the efforts they make in the classroom can have a beneficial effect on the academic performance of their students. It is an important organisational component that a student's accomplishment can be positively influenced by the atmosphere at school. This is crucial since student learning and achievement are directly related to each other. It is a key organisational variable to take into consideration while thinking about the learning and accomplishments of students. When specific student demographic data and earlier successes were taken into account, Goddard (2001) found that collective efficacy was a major determinant in boosting student achievement. This was found when particular student demographic variables were taken into consideration. In addition, it is believed that disparities in student accomplishment between schools are impacted, at least in part, by the aggregate teacher efficacy, that is believed to be of substantial importance. It is possible to make the case that the level of confidence that teachers have in their own abilities is a significant element in the level of academic accomplishment attained by pupils, as well as in the performance of teachers and schools. In addition, having a thorough understanding of efficiency is essential in order to facilitate overall growth within an educational institution. However, Goddard (2001) said that further research is needed to fully comprehend the idea of collective efficacy because existing studies have mostly focused on the theoretical framework. Klassen (2010) argued that statements made

by educators should serve as the basis for studies investigating their effectiveness. So, it is important to study teacher efficacy in connection to different demographics and institutional factors.

In recent decades, principals have been viewed through the lens of facility manager, political leader, instructional guru, and agent of transformation. Due to the increased pressure to perform, principle instructional leadership has risen to the forefront of efforts to reform educational institutions around the world. In the United States, school administrators often face pressure from state mandated policies to raise students' performance on standardised tests (Shin et al., 2013). However, meta-analyses of education studies indicate that leadership indirectly influences student achievement via links that are still completely understood (Leithwood and Jantzi, 2005; Scheerens, 2012). Consequently, a deeper comprehension is necessary for the future of ongoing reform initiatives.

Modern institutions have rethought their missions in light of shifting societal norms, placing a premium on strong school administration. Leadership in the classroom has been found to affect both teacher & student performance, as well as the effectiveness of lessons and the overall atmosphere in the classroom. (Al-Mahdy, Emam, & Hallinger, 2018; Flessa, Bramwell, Fernandez, & Weinstein, 2017; Hallinger, 2015; Hallinger, Hosseingholizadeh, Hashemi, & Kouhsari, 2017; Huber, Tulowitzki, & Hameyer, 2017; Sammons, Hillman & Mortimore, 1995; Shatzer, Caldarella, Hallam, & Brown, 2013; Truong & Hallinger, 2017). The study's findings suggest that principals can have a significant impact on their students' development by helping them acquire a broader range of skills, rather than just the ones traditionally associated with academic success. (Borden, 2011; Hallinger, 2003; Hallinger, Adams, Harris, & Suzette Jones, 2018; Hallinger, Bickman, & Davis, 1996; Heck, Larsen, & Marcoulides, 1990; Marks & Printy, 2003). As a result, school leaders choose a variety of leadership styles in order to reorganise the school in a manner that is consistent with the goals and objectives of the school, as well as to enhance the level of academic achievement among students and the level of motivation among teachers. (Arar & Abu Nasra, 2019; Bellibas & Liu, 2018; Leithwood, Patten, & Jantzi, 2010).

The instructional leadership practises of school principals and the views of teachers in their collective efficacy both contribute to the effectiveness of schools. The instructional leadership practises of school principals and the views of teachers in their collective efficacy both contributes to the performance of schools. (Blatti, Clinton, & Graham, 2019; Chong & Ong, 2016; Goddard, Goddard, Kim, & Miller, 2015; Madimetsa, Challens, & Mgadla, 2018; Voelkel & Chrispeels, 2017). When it comes to managing the teaching process and cultivating a healthy school environment, school principals can make effective use of the expertise and abilities of their teaching staff. The concept of collective teacher efficacy, which is founded on cooperation among educators, has an effect on the academic performance of students as well as the growth of schools. (Goddard, Hoy, & Hoy, 2000; Kim & Seo, 2018; Ninković & Knežević Florić, 2016; Qadach, Schechter, & Da'as, 2019; Tschannen-Moran & Barr, 2004).

The instructional leadership practises of school principals create collective effectiveness beliefs amongst teachers by fostering an environment that encourages collaborating & sharing. (Chong & Ong, 2016; Goddard et al., 2015). It has been observed that principals of schools that encourage collaboration among teachers are able to raise the overall level of teacher efficacy in schools. (Fancera & Bliss, 2011; Mosoge, Challens, & Xaba, 2018; Tschannen-Moran & Barr, 2004). In the same vein, increased levels of collective teacher efficacy improve classroom instruction, school atmosphere, teacher dedication, innovative problem - solving skills, and involvement in decision-making procedures (Al-Mahdy et al., 2018; Bandura, 1993; Goddard, 2001). Within the context of this model, it is possible to make the assertion that high levels of collective teacher efficacy support a high degree of cooperation and synergies among teachers, which in turn makes it easier for schools to find solutions to problems.

Derrington and Angelle (2013) There is "a clear and significant association between collective efficacy and the extent of teacher leadership in a school," as stated in the article. (p. 6). 719 educators hailing from 50 different schools across the United States took part in the study. The researchers observed that informal teacher leaders provided assistance to other educators and actively shared ideas "on a wide variety of themes such as learning, teaching, and managing the classroom." (p. 6). The researchers came to the conclusion that educators who did believe in the ability of the faculty as a whole and in the capacity of teaching staff formed schools where the scope of teacher leadership was larger. Additionally, the scientists found that the relationship between the constructs of teacher leadership and CTE encouraged achievement for students, teachers, and schools.

In addition, Kirby and DiPaola (2011) discovered that collective efficacy, which is one component of the concept of "academic optimism," contributed to the development of better relationships among schools, communities, and families. The researchers in this study found a statistically significant positive link between academic optimism and parental and community engagement in urban primary schools. This relationship was found to exist in urban schools. The researchers pointed out that the importance of the relationship between CTE and community engagement in urban schools is notable because recent research backs up previous results that parents from working class families are less likely to be interested in their children's education. In their investigation of the implementation of inclusive education, Lyons et al. (2016) made the observation that parents were deemed to be "part of a team" and that "concerted efforts were made to involve parents in authentic and meaningful ways." This is another important finding that bears consideration.

Self-efficacy, as defined by Bandura (1977), is the belief that one has the ability to carry out a task or assignment successfully. It aids in the actualization of desired outcomes and enhanced efficiency. A person's belief in his or her own ability to overcome challenges in providing a service is a major factor in shaping his or her behaviour and level of success in overcoming those challenges. School instructors' confidence in their own abilities is likely to lay a solid groundwork for their future success as educators. If a teacher has confidence in their own abilities, they will be better equipped to help their students achieve their goals and overcome any difficulties they may encounter while providing that service. According to Bandura's (1994) theory of learned behaviour, self-efficacy is formed, organised, and modified in response to four types of influencing factors: mastery experiences, vicarious experiences, persuasive arguments, and physiological feedback (emotional arousal). According to research by Iaochite and Souza Neto (2014), teachers need to be prepared to deal with "considerable cognitive, emotional, and practical demands" as a result of "m the relationships among interpersonal behaviours, environmental behaviours, and their own 12 behaviours" in the classroom. Teachers need confidence in their own capacities to persevere and resilience in the face of adversity in order to meet these objectives (Fives & Buehl, 2008, as cited in Iaochite & Souza Neto, 2014). The field of educational psychology is quite comprehensive.

The teaching process places significant cognitive, emotional, and practical demands on educators, and they need to learn how to meet those demands in order to be successful. These demands are the result of relationships among the behaviours of students, other people in the classroom, and the teachers themselves. In order for teachers to successfully manage these expectations, they need to possess a particular set of knowledge and skills, and they need to have faith in their own capacities to be resilient and persistent in the face of adversity (Fives & Buehl, 2008, as cited in Iaochite & Souza Neto, 2014). There has been a significant amount of study done in educational psychology on the numerous aspects that affect a teacher's sense of self-efficacy. For instance, Pfitzner-Eden (2016) investigated the effects of different types of experiences, such as mastery experiences, vicarious experiences, verbal persuasion, and physiological and affective states, on the self-efficacy of instructors. Two different groups, or cohorts, were created out of the participants in this study. One group consists of future educators who have not yet completed their bachelor's degrees. The second group is comprised of advanced preservice teachers who are either working for their master's degrees or are in their final year of study for their bachelor's degrees. At both the first and second cohorts, the German translation of the Scale for Teacher Self-Efficacy (STSE) was the survey instrument that was utilised for this research (Pfitzner-Eden et al., 2014).

The STSE is an adapted version of the Teacher Sense of Efficacy Scale (TSES) (Tschannen-Moran & Woolfolk Hoy, 2001), which provides a stable three-dimensional assessment of teacher self-efficacy for teacher educators at various stages of teacher preparation. The TSES was developed by Tschannen-Moran and Woolfolk Hoy. According to Pfitzner-Eden (2016), a sense of teaching efficacy effects the behaviour of teachers during instruction, the arrangement of the classroom, and the reinforcement patterns given to students who are particularly having difficulty. Those who are preparing to become teachers and have a high teaching efficacy are more likely to have humanistic beliefs towards the control of children, in comparison to those who have a low teaching effectiveness. According to the findings of this study, educators who possess a greater level of pre-teaching abilities are more prepared to deal with a variety of educational demands than educators who possess a lower degree of preparation (Pfitzner-Eden, 2016). Results also demonstrated that more effective preservice teachers were able to be less vocally reactive toward classroom management and unfavourable situations, which enabled students to settle some of their problems and took teacher confidence to new heights (Pfitzner-Eden, 2016). Effective educators are more likely to recognise and experience less failure among their students, which is likely related to a lessened desire to protect themselves against the potentially bad outcomes of their teaching (Henson, 2001; Pfitzner-Eden, 2016).

High-efficacy teachers have extensive training and experience, which allows them to operate a high-quality classroom in which their pupils have a greater chance of succeeding as a direct result of the high-efficacy teacher (Pfitzner-Eden, 2016). It has been hypothesised that teachers with varying degrees of experience and levels of self-efficacy can achieve comparable levels of favourable and fruitful outcomes. Imagine a scenario in which low-efficacy instructors were given the opportunity to participate in classroom instruction, where they could interact with students in a positive and encouraging setting while also gaining valuable teaching experience. If this is the true, then they have the same potential for achievement as their high-efficacy counterparts (Pfitzner-Eden, 2016). According to Pfitzner-Eden (2016), the student life has the potential to provide teachers with low self-efficacy with an opportunity for growth and development that will help them become high-efficacy teachers.

Objective

To determine how different attributes of Leadership influence Teachers Efficacy.

Hypothesis

H₀: There is no significant correlation between teacher Efficacy & following attributes of leadership- Vision, Flexibility, Directing, Delegating, Thoughtfulness, Pedagogical Leader

H₁: There is a significant correlation between teacher Efficacy & following attributes of leadership- Vision, Flexibility, Directing, Delegating, Thoughtfulness, and Pedagogical Leader.

Reliability and Validity of Questionnaire

1. Test Retest Reliability

Correlation matrix reflecting the data collected on two different dates from the same set of 30 respondents.

The table reflects that there is a significant correlation between the data collected on two different days by the same 30 respondents.

_		94.01	9162 T	Lane 1	V262	vaps I	V307	Fabr	rino I	£304	F202	£304	£302	DIDI I	data -	make 1	Anna	Corretations	papa	DL101	DENDO I	the title of	Av next 1	DK.104 T	Acres 1	TIDA I	THD2	T204	T302	1301	1302	gant I	#1555 T	P201	P252	espa T	200
V901	Payron Consistion	9101	834"	742"	952°	V301 893	9302 110	344	159	7201	344	#301 #201	#302 852	567	500"	817	854°	314	365	670°	476°	777	504°	702"	582"	T1D1	T1D2 - 078	329	218	7301	500"	P101	665	591°	F202	#501 #501	P30
	Dig (2-falled)		900	100	000	824	563	063	401	952	062	000	.000	.001	2014	622	.010	091	.048	900	006	000	200	000	001	808	882	677	264	000	004	000	2000	801	.000	013	
YSDIZ	Pearson Constation	.834	- 1	.815	.557"	234	269		271	364	320	239	.705	A54"	400	.303	.A15	A98	.496	.554	258	815	.479	532"	420	.542	.047	.407	.107	.624"	526"	.696	.064	548	594"	377	
1064	Sig (2 bited)	.000		.000	.001	.214	.161	.022	.547	348	065	.000	.000	.012	020	:100	026	.025	.001	.001	168	000	.007	.003	821	.437	804	026	572	000	.003	.000	.000	002	.001	.040	_
A304	Pearson Consiston (5g (2-bited)	742	815"		844"	126	180	354	258	575"	A23'	797	.816" 000	363	900	457	502	441	.361	749"	A22' 020	871"	507	84)"	317	274	- 029 879	369	224	879"	895	813.	729	754"	.665"	956.	- 1
V202	Payrage Constation	452	557	344	1	374	297	522	363	584	497	735	561	770"	594	403	491	585	450	753	577	576	527	317	557	490	172	497	397	.917	706	754°	662	459	599"	583	41
	Dg (Ztelet)	.000	881	805		842	.111	863	054	861	895	800	001	808	800	.000	006	881	108	800	2001	868	803	000	801	006	365	006	834	000	868	000	000	600	000	801	- 3
V301	Plearson Comeration	.093	234	206	374	1	J16"	.224	.121	338	.195	.336	335	.367	.194	.546"	.331	.210	.137	.329	.094	.106	295	.150	.181	824"	4617	.125	.040	374	366	.326	417	277	364	.538"	.43
V302	Dg (2 taled)	834	214	126	043	200	000	213	505	867	303	069	679	.053	305	100	574	268	405	876	821	.326	113	426	394	.000	800	512	632	642	047	877	022	.139	048	002	
4302	Fearson Constition Sig. (2 takes)	563	269	,190	297	716	. ,	.317	129	229	062 887	303	207	197	5114	202	924	142	.142 453	278	491	A03	A150	762	.097	801"	A73"	240	.056 768	204	400"	314	1155	318	436	209	- 1
F1D1	Fewrenn Commission	346	.417	354	522"	224	307	1	740"	531	373	454"	5091	426	399	327	224	755	1027	506"	3807	347	317	332	207	214	- 035	960"	430"	531"	377	477	425	211	264	210	7
	Sig (2-twind)	063	922	655	003	212	069		000	.003	542	010	004	018	829	069	225	000	000	004	306	837	200	679	298	252	854	000	000	000	.043	000	219	262	150	130	-
F102	Pearson Coneidon	.150	371	258	.353	.127	.129	740	- 1	542"	AUE:	373	513	344	. 329	(800)	.204	840	806	.300	334	,293	266	.178	.149	.174	4341	.706"	367	.421	.322	.369	361	.145	.062	.100	1
F301	tig (3-tailed) Pearson Consistion	401	147	100		.555	491	521		002	.025	042	.004	.063		475	379	000	.000	638	.734	129	4100	345		259	450	.000	.048	211	.083	651	.010	445	747	800	_
1201	Sig (2-take)	256	364'	570	.564"	339	221	.531	543"		853"	521"	AEJ*	539"	.148"	404	.320 004	492"	.505	000	369	A30'	824	404"	A26'	266	103	.493°	279	000	.590"	524"	.585"	825	209	.030	. 43
F302	Pearson Consistion	344	330	421	497	195	082	373	409	855"	1	.443	354	404	436	391	283	433	475	524	314	429	417	373	293	196	.049	332	192	553	436	444	445	400	366	340	Ä
	5g (Joreo	.062	085	.029	005	303	567	542	021	000		.014	.056	027		:000	.130	017	700	100	.069	.018	309	042	130	299	294	673	300	092	.018	.014	814	.029	.047	.066	-3
F301	Pearson Consistion	.820"	739"	.787"	133.	.336	303	.414"	373	521	443	1.	345	.766"	890"	A70"	.499	500	501	.727	.490°	841"	.736"	.699"	.554"	.398	137	ATE	.261	816	.562"	348.	.000"	.801"	.271"	505	
F300	Dig (3 failed) Fearson Constation	.006	1000	.000	000	.069	.104	010	542	.003	014	2107	000	.001	800	000	.005	.004	. 005	000	.006	500	.000	.000	.001	530	469	.021	.164	800	.001	000	800	800	.000	004	_
1,000	Dig (2-farled)	852	705"	816"	581"	335	124	509	513	A87" 009	354	545	,	584"	512	395	550	802"	586	584"	259	877	836	522"	450	300	.130 406	013	100	600	851 O12	756"	782	500	.556"	505	1
D101	Fearson Commission	567	454	.003	370	367	249	426	344	136	404°	768"	594"	1	104	417	.42E	420	317	711	.819	.595"	460	740	.661	430	000	387	390	831	606	862"	775	710"	545	465"	-3
	Sig () taled:	001	012	800	800	253	187	218	(63	002	627	.000	001		200	2004	818	821	268	900	.003	001	215	800	000	018	1.600	037	258	600	.000	800	000	800	000	810	
0102	Pearson Correlation	:506".	.400"	.603	894"	.194	.114	396	320	548"	A25	.690"	612"	100,	.1.	306	268	432	.298	.494	.495"	.800°	.449	1603	.6971	222	+208	365	365	800"	.405"	Jat'	.450"	754	.599"	210	.3
0201	Sig (2-tailed) Pearson-Conesision	004	028	000	000	305	550	.629	265	602	511	000	004	000		100	143	017	110	000	804	000	813	800	000	276	276	036	035	600	000	600	000	800	000	165	-4
0201	Dig (2 falled)	A37	303	A37"	802	546	103	337	875	.431°	933	A70"	395	.009	100		.191	.396	291	497	347	476"	.013	400	405	521	629	373	297	A79"	140	514"	.034	329	437	879"	.54
0202	Pearson Consistion	404	405	502"	401	321	018	324	204	328	293	430.	.550"	426	268	444"		ATT	215	311	186	537	4240	365	405	310	763	201	881	400	178	507	674"	309	267	883"	-3
	tig () talen	010	026	005	206	074	924	216	279	884	130	005	002	018	157	900		021	254	672	319	.007	.001	549	826	096	366	296	872	626	352	000	000	097	154	.000	9
0001	Pearson Coneration	314	.A09	441	581"	218	.142	.766"	.840	A32"	.A33'	556	802	A20	432	396		1.1	752"	.516"	379	342	.375	.410	375	265	.037	.267	.368	.544"	.299	ALT"	415"	.210	277	400	.34
nane.	Sig () failed:	.091	025	015	.001	266	A55	900	000	.006	817	004	000	621	817	.000	921		.000	.004	.040	.005	.041	025	941	158	546	.000	017	002	100	006	210	.000	139	.009	_0
0005	Pearson Constation Sig. (3-failed)	365	496"	361	A03"	337 409	.142 453	.000	900	.004	479"	501"	.599"	317	298	291	215 254	712	- 4	403"	192	317	360	A05'	221	.505	633	812"	529	479"	242	A25'	213	379	342	.340	2
DLIDI	Pearson Correlation	.018	556"	748	753	326	278	.506	380	881	574"	227	544	211	494	417	333	510	497	- 40	274	524	462	863	540	.356	.007	.493	A25	939"	687	872"	829"	432	813	106	.54
	Sig (2 taled)	.000	801	000	.000	876	.138	.004	800	000	001	000	002	.000	800	,005	872	.004	.507		800	.003	dip	.006	.000	.054	847	.006	.019	000	.000	600	000	800	000	304	.0
DU100	Pearson Correlation	.476"	318	.422	.572"	.094	.131	AR1"	224	.359	.316	490"	.210	519"	.495°	30	.198	378	.163	374	1	317	274	837"	A79"	199	.027	.490°	1995	663.	.397"	494"	330	.37E	429	.312	.41
DL301	Sig (2-failed) Pearson Commission	.006	.169	020	001	821	A01	306	234	.051	009	300	.166	003	. 005	.061	319	.040	317	.000	317	.000	.143	.000	007	307	867	007	.000	000	.030	006	717	:040	218	.013	- 0
DC2D1	Sig (2 twind)	773	815"	.871° 000	676"	326	159	392	129	430	429°	841	877	595	800	.476° .000	537	342	568	.524"	.000		.855°	506	337	213	1.000	100	209	834	.643	793"	000	704"	.690	A01	3
DK202	Pearson Constation	.804"	479"	887	5271	295	150	317	265	410	467	736	8381	440	445	613"	575"	325	360	482	274	455"	1	4231	293	295	.120	319	.125	507	271	805	612"	A321	.599"	445	- 41
	Sig (2 feled)	550	567	.004	003	113	429	266	174	825	000	.000	000	.015	813	2004	001	041	051	.010	143	000		638	129	114	520	246	.517	004	147	000	000	.000	000	014	
06301	Pearson Correlation	702	502"	.843	.717	110	.162	312	.576	414	373	495	A22"	.740"	462,	.410	365	-65	.405	963	A37"	506	.425	1	793"	.190	- 099	.345	.309	822	.559"	645	.611	466	.641"	526	47
DL302	Sig (S-failed)	.000	003	800	500	429	392	823	345	867	642	000	003	661"	500	.006	815	025	028	900	.000	337	879	1000	900	295	807	062	098	000	.001	000	7000 430	540	.000	003	- 0
DC-300	Dg (2-twind)	592"	A26'	742° 000	.557	761	810	237	436	A26'	130	584"	465°	000	200	405 027	826	375	221 240	645"	479	068	.203 129	193.		626	-213	142	361	833°	502"	563"	200	902	555"	516"	,45 0
TSDS	Fearson Consistion	046	347	274	490	326	801	216	574	266	.196	396	390	A30	222	527"	.210	265	185	.356	192	.224	296	.199	093	1	795	.110	.196	404	.324	367	391	351	.300	559	A1
	tig (2 teled)	.006	437	143	006	.000	000	.262	369	155	299	030	038	.016	236	003	096	158	327	054	301	213	114	.295	826		.000	.563	411	.027	080	.053	032	967	167	.001	ė.
1102	Pearson Corelation	-076	547	- 629	.172	.661	A73	-836	-341	.103	.049	137	.136	.000	- 208	A01	193	837	.091	.047	.037	800	120	- 099	-213	355"	7	109	129	.112	103	.000	100	.058	119	.425	3
T201	Big (I faled) Pearson Consistion	.602	804	.979	365 487	.808	006	.854	450	589	799	400	460	1.000	270	.024	.366	246	633	.647	967	1.000	526	807	259	.000		565	518	556	587	674 436	A12	.769	530	.019	
teri	Dig. (2-billed)	.326	837	366	006	125	240	360	705	492	.502	819	449	387	.265	373	201	767	812	493	400	306	219	345	197	563	-109	,	400	821	327	434	379	3107	219	253	.2
1302	Fearson Constation	215	.107	224	367	040	.094	830	367	208	.192	261	160	353	385	297	.081	.000 .058	.119	425	.635"	259	123	309	.173	116	-122	858"	- 1	371	.149	327	211	127	.100	192	-,1
	Sq (25Heb	264	572	234	.034	832	.789	.000	046	278	306	.164	400	058	835	331	872	052	529	018	.000	167	.517	.096	361	411	.518	000		564	436	078	264	503	290	337	3
1301	Fearson Consistion	712	104"	879"	957"	374	.204	.531	427	711	.553"	216	127	831"	900	479"	400	544	.479	.939"	.863"	834"	.607	922"	833"	404	.112	.521	301	- 1	790	810	739"	714	835	AHC	49
1302	Sig (2 faled) Pearson Constaton	000	.000	000	.000	042	128	003	27.9	.000	.092	.000	000	.005	000	707	326	002	705	000	000	000	004	900	.000	527	.556	002	048	2007	000	000	000	.000	900	007	-0
1,007	Dig (2-beled)	.506"	506"	.895"	306	366	490"	377	322	590"	A36"	562"	451' 012	808"	A05"	376	352	299	221	.007	930	014	271	559"	.005	324	.100 587	327	.148 436	700"	1	545"	472"	553"	A77'	205 276	2
P101	Pearson Constation	796	100	813"	.754"	329	.195	A77"	359	524"	446	919"	756	862	741	414	697	417	415	472"	494	.763"	.606"	845"	.563"	367	.000	.434	327	.810"	.545"	307	494	705	847	532"	3
	(ig () tales)	.000	.000	.000	000	877	214	.000	051	.002	014	.000	.000	.000	.000	004	.000	008	827	000	.006	000	.000	.000	001	.053	578	.010	079	.000	902		000	800	.000	003	-
P102	Pearson Consistion	.601"	.604"	.739"	.662"	,45 F.	.195	A25	.361	.505"	ARC	908"	792"	775"	.850".	.584"	.874	.413"	.445	.629"	.339	ME	.813"	411,	.430°	391"	.155	.339	.211	.739"	.472"	.894"	1	.807	.977"	.584"	
H200	Sig (2-tailed)	000	000	000	000	F22	412	019	010	001	014	000	000	.000	000	2001	000	010	013	000	.068	000	800	000	006	832	#12	067	764	000	009	000		800	001	001	_
F201	Pearson Consistion . Dig (2-failed)	.091	549"	764"	859"	139	316	211	145	806	.405°	801"	586	756	.154"	329	309	.218	370	A32"	376	.704"	.632	.606	.545	361	.006 769	321	503	214	553"	705	807	- 1	.674"	287	- 1
F202	Pearson Constation	888	594"	865	5991	304	436	262	062	366	366	775	558"	545	599	437	267	277	342	413"	A29	800"	598"	541	555"	300	.119	219	160	835"	472"	967	672"	324"	1	406	-
	Tig (2 faled)	.000	801	.000	000	040	016	110	747	545	007	.000	001	.000	800	017	154	138	064	999	216	000	.000	800	001	187	530	245	399	800	000	000	001	800		026	- 1
F301	Fearson Consistion	450	311	528	.583	.538	209	.293	.100	.302	.342	505	.505	.403	260	870	103	.400	.348	.506	312	.401	443	520	516	.559	425	253	.182	.414	.205	522	.584"	- 287	A26	1	
	Sig (2 failed)	.013	040	.003	.001	.002	267	330	400	.038	004	.004	004	.010	165	.000	.000	.008	.066	.004	.093	828	.014	803	.004	.001	.019	177	337	507	.276	003	.001	124	.026	_	.0
F302	Fearson Consistion Sig (2 talled)	450	281	417	A99"	A76"	229	206	244	477	431	.441	327	338	.130	562"	367	367	295	.545"	ATT	346	483	.474"	452	413	277	317	.169	A16"	210	292	367	.193	363	216	

Consiston is significant at the 0.05 level (2-failed Consiston is significant at the 0.05 level (2-failed) European Economic Letters ISSN 2323-5233 Vol 13, Issue 4 (2023)

https://doi.org/10.52783/eel.v13i4.701

http://eelet.org.uk

2. Internal Consistency Reliability

Item	Cronbach's	Cronbach's Alpha	No of	No of	Internal
	Alpha	Based on Standardized	Items	observations	Consistency
		Items			
Vision	0.724	0.724	3	30	Acceptable
Flexibility	0.712	0.712	3	30	Acceptable
Directing	0.701	0.702	3	30	Acceptable
Delegating	0.721	0.721	3	30	Acceptable
Thoughtfulness	0.722	0.722	3	30	Acceptable
Pedagogical leader	0.699	0.700	3	30	Acceptable

Validity

1. Content Validity

 $CVR = \underline{Ne-(N/2)}$

N/2

CVR= Content Validity Ratio

Ne = number of experts who declare an item of importance

N = The total number of experts Table

Table 1 : Minimum Value of CVR, p = .05, Source: (Lawshe, 1975)

No. of Panellists	Minimum Value
5	.99
6	.99
7	.99
8	.75
9	.78
10	.62
11	.59
12	.56
13	.54
14	.51
15	.49
20	.42
25	.37
30	.33
35	.31
40	.29

Item	Question	Judge	Total	Content									
		1	2	3	4	5	6	7	8	9	10	Count	Validity Ratio
												1	(CVR)
V1D1		1		1	1		1	1		1	1	7	0.75
V1D2		1		1	1		1	1	1	1		7	0.75
V2D1		1	1	1	1	1	1	1	1	1		9	1.25
V2D2		1	1	1	1	1	1	1	1		1	9	1.25
V3D1		1	1	1	1	1	1	1	1	1	1	10	1.5
V3D2		1	1		1		1		1	1	1	7	0.75

European Economic Letters ISSN 2323-5233 Vol 13, Issue 4 (2023)

https://doi.org/10.52783/eel.v13i4.701

http://eelet.org.uk

F1D1	1	1		1		1	1	1	1	1	8	1
F1D2	1	1	1		1	1	1		1	1	8	1
F2D1	1	1	1		1		1		1	1	7	0.75
F2D2	1	1	1		1		1	1	1	1	8	1
F3D1	1	1		1	1		1		1	1	7	0.75
F3D2	1	1	1	1	1	1	1	1	1	1	10	1.5
D1D1	1	1	1		1		1		1	1	7	0.75
D1D2	1	1	1	1	1	1	1	1	1	1	10	1.5
D2D1	1	1		1		1		1	1	1	7	0.75
D1D2	1	1	1	1	1		1		1	1	8	1
D3D1	1	1	1	1		1	1		1		7	0.75
D3D2	1	1	1	1	1		1		1		7	0.75
DL1D1	1	1	1		1		1	1	1	1	8	1
DL1D2	1	1		1			1	1	1	1	7	0.75
DL2D1	1		1	1	1	1	1	1	1	1	9	1.25
DL2D2	1	1	1		1		1		1	1	7	0.75
DL3D1	1		1		1		1	1	1	1	7	0.75
DL3D2	1	1	1	1		1	1	1	1	1	9	1.25
T1D1	1	1		1			1	1	1	1	7	0.75
T1D2	1	1	1	1			1	1	1	1	8	1
T2D1	1	1		1		1	1	1	1	1	8	1
T2D2		1	1	1			1	1	1	1	7	0.75
T3D1	1	1	1	1	1	1	1	1	1	1	10	1.5
T3D2		1		1		1	1	1	1	1	7	0.75
P1D1	1	1		1		1	1	1	1	1	8	1
P1D2	1	1	1	1	1		1	1			7	0.75
P2D1	1	1		1	1		1		1	1	7	0.75
P2D2	1	1	1		1	1		1		1	7	0.75
P3D1	1		1	1		1	1		1	1	7	0.75
P3D2	1	1	1	1		1	1	1		1	8	1

2. Construct Validity: Convergent & Discriminant Validity

									Correlatio	ns									
		V1	V2	V3	F1	F2	F3	D1	D2	D3	DL1	DL2	DL3	T1	T2	T3	P1	P2	P3
V1	Pearson Correlation	1	.742**	0.093	0.344	0.358	.820**	.567**	.417*	0.314	.670**	.773**	.702**	0.046	0.328	.712**	.790**	.591**	.450*
V2	Pearson Correlation	.742**	1	0.286	0.354	.570**	.787**	.863**	.497**	.441*	.748**	.671**	.843**	0.274	.369*	.879**	.813**	.754**	.528**
V3	Pearson Correlation	0.093	0.286	- 1	0.234	0.339	0.336	0.357	.546**	0.21	0.328	0.186	0.15	.824**	0.125	.374"	0.328	0.277	.538**
F1	Pearson Correlation	0.344	0.354	0.234	1	.531**	.464**	.428*	0.337	.755**	.506**	.382*	0.332	0.216	.960**	.531**	.477**	0.211	0.283
F2	Pearson Correlation	0.358	.570**	0.339	.531**	- 1	.521**	.538**	.411*	.492**	.681**	.430*	.484**	0.266	.493**	.711**	.524**	.408*	.382*
F3	Pearson Correlation	.820**	.787**	0.336	.464**	.521**	1	.768**	.470**	.508**	.727**	.841**	.699**	.398*	.419*	.816**	.919**	.801**	.505**
D1	Pearson Correlation	.567**	.863**	0.357	.428*	.538**	.768**	1	.467**	.420*	.711**	.595**	.740**	.430*	.382*	.831**	.862**	.758**	.463**
D2	Pearson Correlation	.417*	.497**	.546**	0.337	.411"	.470**	.467**	1	.396*	.497**	.476**	.488**	.527**	0.273	.479**	.514**	0.329	.870**
D3	Pearson Correlation	0.314	.441*	0.21	.755**	.492**	.508**	.420*	.396*	1	.510**	0.342	.410*	0.265	.787**	.544**	.487**	0.318	.469**
DL1	Pearson Correlation	.670**	.748**	0.328	.506**	.681**	.727**	.711**	.497**	.510**	1	.524**	.863**	0.356	.493**	.939**	.672**	.632**	.506**
DL2	Pearson Correlation	.773**	.671**	0.186	.382*	.430*	.841**	.595**	.476**	0.342	.524**	1	.506**	0.234	0.306	.634**	.783**	.704**	.401*
DL3	Pearson Correlation	.702**	.843**	0.15	0.332	.484**	.699**	.740**	.488**	.410*	.863**	.506**	1	0.198	0.345	.822**	.645**	.688**	.526**
T1	Pearson Correlation	0.046	0.274	.824**	0.216	0.266	.398*	.430*	.527**	0.265	0.356	0.234	0.198	1	0.11	.404*	0.357	0.351	.559**
T2	Pearson Correlation	0.328	.369*	0.125	.960**	.493**	.419*	.382*	0.273	.787**	.493**	0.306	0.345	0.11	1	.521**	.434*	0.187	0.253
T3	Pearson Correlation	.712**	.879**	.374*	.531**	.711**	.816**	.831**	.479**	.544**	.939**	.634**	.822**	.404*	.521**	1	.810**	.714**	.484**
P1	Pearson Correlation	.790**	.813**	0.328	.477**	.524**	.919**	.862**	.514**	.487**	.672**	.783**	.645**	0.357	.434*	.810**	1	.705**	.522**
P2	Pearson Correlation	.591**	.754**	0.277	0.211	.408*	.801**	.758**	0.329	0.318	.632**	.704**	.688**	0.351	0.187	.714**	.705**	1	0.287
P3	Pearson Correlation	.450*	.528**	.538**	0.283	.382*	.505**	.463**	.870**	.469**	.506**	.401*	.526**	.559**	0.253	.484**	.522**	0.287	1
**. Corr	elation is significant at	the 0.01 leve	el (2-tailed).																
*. Corre	elation is significant at th	ne 0.05 leve	(2-tailed).																

European Economic Letters ISSN 2323-5233 Vol 13, Issue 4 (2023) https://doi.org/10.52783/eel.v13i4.701

http://eelet.org.uk

The highlighted matrices indicate the association between the variables associated with four constructs Pedagogical Leadership, Delegating, Vision, Thoughtfulness, Directing, Flexibility

It can be seen that

- 1. There is a significant correlation within the measures of each construct- indicating convergent validity
- 2. There is no significant correlation between the measures of two constructs- indicting divergent validity

Thus construct validity is established

REGRESSION ANALYSIS

Model Summary

Model	R	R Square	•	Std. Error of the Estimate
1	.860ª	.739	.735	.37140

REGRESSION ANALYSIS

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.860ª	.739	.735	.37140

a. Predictors: (Constant), Pedagogical_Leader, Directing, Delegating, Thoughtfullness, Vision, Flexibility

The adjusted r square =0.735, Thus the independent variables can explain only 73.5% variability in dependent variable.

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	146.757	6	24.460	177.322	.000ª
	Residual	51.727	375	.138	j.	
	Total	198.484	381			

a. Predictors: (Constant), Pedagogical Leadership, Directing, Delegating, Thoughtfulness, Vision, Flexibility

b. Dependent Variable: Teacher_Efficacy

Ho: All co-efficients are not significantly different fron zero. H1: At least one co-efficient is significantly different from zero.p-value = $0.000 < 0.05 = \alpha$, the level of significance Null Hypothesis Ho is rejected.

Therefore, At 5% level of significance (95% confidence), at least one co-efficient is significantly different from zero.

European Economic Letters ISSN 2323-5233 Vol 13, Issue 4 (2023)

https://doi.org/10.52783/eel.v13i4.701

http://eelet.org.uk

Coefficients^a

		Unstandardized	Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	1.249	.106		11.821	.000
	Vision	.453	.029	.657	15.661	.000
	Flexibility	.552	.033	.039	16.543	.000
	Directing	071	.014	150	-5.046	.000
	Delegating	.087	.017	.150	5.116	.000
	Thoughtfulness	.080	.019	.150	4.333	.000
	Pedagogical Leadership	.126	.017	.242	7.398	.000

a. Dependent Variable: Teacher Efficacy

 $\label{eq:tensor} Teacher\ Efficacy = .453 vision + 0.552\ flexibility - 0.071 directing + 0.087 delegating \\ + 0.080 thoughtfullness + 0.126\ pedagogical\ leader + 1.249$

It is observed that p-value all regression co-efficient is less than 0.05 the level of significance. Therefore the researcher may infer all attributes significantly contribute to Teacher Efficacy

It is also observed that there exists a negative impact of directing on Teacher Efficacy.

Findings:

- 1. Questionnaire designed to measure attributes of leadership contributing to teacher efficacy is reliable and valid
- 2. Amongst the attributes of leadership contributing to teacher efficacy "Flexibility" is most important
- 3. Amongst the attributes of leadership contributing to teacher efficacy "Directing" is least important
- **4.** There is a negative impact of "Directing" on teacher efficacy which means as directing increases teacher efficacy decreases.
- 5. Attributes of leadership contributing to teacher efficacy in descending order of their importance

Conclusion

The research aims to infer the effect of leadership on Teacher efficacy. From the literature review 6 attributes of leadership were identified as Vision, Flexibility, Directing, Delegating, thoughtfulness, and Pedagogical Leader. A Regression Analysis was carried out taking Teacher Efficacy as a dependent variable and aforementioned six variables as independent variables. It was observed that Directing is least contributes to teacher Efficacy the remaining five attributes contribute significantly to teacher efficacy and the attribute of Leadership 'Flexibility' is contributing the most. Further, the attributes of Flexibility & Directing were taken for the first time in this kind of research presuming that their metamorphosis to influence could not be seen on Teacher Efficacy.

References:

- 1. Goddard, R. D., Hoy, W. K., & Hoy, A. W. (2000). Collective teacher efficacy: Its meaning, measure, and impact on student achievement. American Educational Research Journal, 37(2), 479-507.
- 2. Klassen, R. M., & Chiu, M. M. (2011). The occupational commitment and intention to quit of practicing and preservice teachers: Influence of self-efficacy, job stress, and teaching context. Contemporary Educational Psychology, 36(2), 114-129.
- 3. Cheol Shin, J., Jeung Lee, S., & Kim, Y. (2013). Research collaboration across higher education systems: maturity, language use, and regional differences. *Studies in Higher Education*, *38*(3), 425-440.
- 4. Leithwood, K., & Jantzi, D. (2005). A review of transformational school leadership research 1996–2005. *Leadership and policy in schools*, 4(3), 177-199.
- 5. Scheerens, J. (Ed.). (2012). School leadership effects revisited: Review and meta-analysis of empirical studies. Springer Science & Business Media.
- Al-Mahdy, Y. E. H., Emam, M. M., & Hallinger, P. (2018). Assessing the contribution of principal instructional leadership and collective teacher efficacy to teacher commitment in Oman. *Teaching and Teacher Education*, 69, 191-201.
- 7. Castillo, F. A., & Hallinger, P. (2018). Systematic review of research on educational leadership and management in Latin America, 1991–2017. *Educational Management Administration & Leadership*, 46(2), 207-225.
- 8. Hallinger, P., Wang, W. C., Chen, C. W., & Liare, D. (2015). Assessing instructional leadership with the principal instructional management rating scale (p. 1). Dordrecht: Springer.
- 9. Liu, S., & Hallinger, P. (2018). Principal instructional leadership, teacher self-efficacy, and teacher professional learning in China: Testing a mediated-effects model. *Educational administration quarterly*, *54*(4), 501-528.
- 10. Huber, S., Tulowitzki, P., & Hameyer, U. (2017). School leadership and curriculum: German perspectives. *Leadership and policy in Schools*, 16(2), 272-302.
- 11. Sammons, P., Hillman, J., & Mortimore, P. (1995). Key characteristics of effective schools. *A review of school effectiveness research*.
- 12. Mattar, D., Pansiri, N. O., Heck, R. H., Shatzer, R. H., Caldarella, P., Hallam, P. R., & Brown, B. L. (2013). Principals' instructional leadership and school performance: implications for policy development. *Journal of Educational Administration*, 48, 130-141.
- 13. Truong, T. D., Hallinger, P., & Sanga, K. (2017). Confucian values and school leadership in Vietnam: Exploring the influence of culture on principal decision making. *Educational management administration & leadership*, 45(1), 77-100.
- 14. Hallinger, P. (2003). Leading educational change: Reflections on the practice of instructional and transformational leadership. *Cambridge Journal of education*, *33*(3), 329-352.
- 15. Hallinger, P., Adams, D., Harris, A., & Jones, M. S. (2017). Review of conceptual models and methodologies in research on principal instructional leadership in Malaysia: A case of knowledge construction in a developing society. *Journal of educational administration*.
- 16. Heck, R. H., Larsen, T. J., & Marcoulides, G. A. (1990). Instructional leadership and school achievement: Validation of a causal model. *Educational Administration Quarterly*, 26(2), 94-125.
- 17. Marks, H. M., & Printy, S. M. (2003). Principal leadership and school performance: An integration of transformational and instructional leadership. *Educational administration quarterly*, *39*(3), 370-397.

- 18. Arar, K., & Nasra, M. A. (2019). Leadership style, occupational perception and organizational citizenship behavior in the Arab education system in Israel. *Journal of Educational Administration*.
- 19. Bellibas, M. S., & Liu, Y. (2018). The effects of principals' perceived instructional and distributed leadership practices on their perceptions of school climate. *International journal of leadership in education*, 21(2), 226-244.
- 20. Blatti, T., Clinton, J., & Graham, L. (2019). Exploring collective teacher efficacy in an international school in Shanghai. *International Journal of Learning, Teaching and Educational Research*, 18(6), 214-235.
- 21. Mosoge, M. J., Challens, B. H., & Xaba, M. I. (2018). Perceived collective teacher efficacy in low performing schools. *South African Journal of Education*, *38*(2), 1-9.
- 22. Derrington, M. L., & Angelle, P. S. (2013). Teacher Leadership and Collective Efficacy: Connections and Links. *International journal of teacher leadership*, 4(1), n1.
- 23. Kirby, M. M., & DiPaola, M. F. (2011). Academic optimism and community engagement in urban schools. *Journal of Educational Administration*.
- 24. Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. *Psychological review*, 84(2), 191.